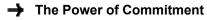


HDPE liner with previously installed liner visible

HDPE pipe connected to leachate collection pipe in Cell 1 East

David Barbour


P. Eng

Construction Engineering Inspector & Waste Management Engineer

GHD

Proudly employee-owned | ghd.com

138 East 7th Avenue Suite 100 Vancouver British Columbia V5T 1M6 Canada **T** 778 347-1339 **E** david.barbour@ghd.com

Connect

Matthew Senior

From: David Barbour

Sent: Tuesday, September 26, 2023 4:50 PM

To: Matthew Senior; Rose Marie Rocca; Roxy Hasior

Cc: Deacon Liddy

Subject: Upland Landfill Site Inspection Sept 22

CompleteRepository088877

Description: Upland Landfill

JobNo: 8877 OperatingCentre: 08

RepoEmail: 088877@ghd.com

RepoType: Project

Hello all,

Here are my notes and photos with descriptions regarding Friday's site inspection.

Work completed

- The sump area was filled with drain rock and the geotextile installed before waste was placed.
- One lift of waste has been place over entire floor of landfill.
- · A second lift has been started on the north west area
- Concrete slab poured for pump station enclosure
- A berm has been built along the top west and south edge of landfill to divert surface water from flowing onto the lined area

Next steps

- Construct pump station enclosure
- Install pump, wiring, ect.

Let me know if you have any questions. I am available tomorrow but away from Sept 28 – Oct 10th. You can reach my by call or text during that time.

Cell 1 West viewed from northwest corner

Leachate and leak detection risers / concrete poured for pump station

Leachate and leak detection risers / concrete poured for pump station

Pipe directing leachate to Cell 1 East

Cell 1 West from north east corner

West perimeter road. Berm to prevent surface water run-on visible on right side of photo

South end of Cell 2

David Barbour

Construction Engineering Inspector & Waste Management Engineer

GHD

Proudly employee-owned | ghd.com 138 East 7th Avenue Suite 100 Vancouver British Columbia V5T 1M6 Canada T 778 347-1339 E david.barbour@ghd.com

The Power of Commitment

Connect

Please consider the environment before printing this email

NAME:		David Barbour	PROJECT NUMBER:	88877	
DATE/TIME:		11/8/2022 8:00	SITE:	Upland landfill	
PERSONNEL ON SITE:		Joe Cassidy, Brian Fagan, Li	ner crew		
WEATHER CONDITIONS: Mixed sun and cloud, -2 C					
HASP for this project ca	an be found	on project portal			
SITE VISIT OBJECTIVE - Observe construction a					
SITE NOTES / PROGRE					
-Crew placing GCL and H	HDPE panels IDPE installed y 7m x 10m.	# 34 and 35 on small area w d. Area being lined to prevent	here primary l	ics installed yesterday due to snow liner was placed west of sump. Slope above this ined slope flowing into leak detection layer in	
Next Steps - resume geosynthetic ins	stallation whe	en weather permits			
OUTSTANDING INFORMATION / NEW ISSUES:					
-Snow and frozen conditions making geosythetic installation inpracticle					
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):					
NOTE: All site shates to be filed in the Project Folder on the Project Portal					

NAME:		David Barbour	PROJECT NUMBER:	88877		
DATE/TIME:	TIME: 11/8/2022 8:00		SITE:	Upland landfill		
PERSONNEL ON SITE:	ERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew					
WEATHER CONDITION	WEATHER CONDITIONS: Mixed sun and cloud, -2 C					
HASP for this project of	can be found	on project portal				
SITE VISIT OBJECTIVE - Observe construction a						
-Crew placing GCL and	n geotextiled a HDPE panels ; HDPE installed ely 7m x 10m. now and frozer	# 34 and 35 on small a l. Area being lined to pr n conditions	rea where primary	tics installed yesterday due to snow liner was placed west of sump. Slope above this ined slope flowing into leak detection layer in		
OUTSTANDING INFORMATION / NEW ISSUES: -Snow and frozen conditions making geosythetic installation inpracticle						
ATTACHMENTS / SKET						

NAME:	David Barbour	PROJECT NUMBER:	88877			
DATE/TIME:	11/10/2022 12:30	SITE:	Upland landfill			
PERSONNEL ON SITE:	Joe Cassidy, Liner crew					
WEATHER CONDITION	NEATHER CONDITIONS: Cloudy 1C					
HASP for this project ca	an be found on project portal					
SITE VISIT OBJECTIVE - Observe construction a						
SITE NOTES / PROGRE						
	PE liner on north-west area of landfill yaced on north end of west slope	esterday/				
Next Steps						
- continue placing geosyt	hetics on north west area of landfill					
OUTSTANDING INFOR	MATION / NEW ISSUES:					
OUTSTANDING IN OR	WATION / NEW 1330E3.					
ATTACHMENTS / SKET	CHES (Site Photos To Be Filed Sep	arately):				
		• /				
NOTE: All site photos to	be filed in the Project Folder on the Pr	oiect Portal.				

NAME:		David Barbour	PROJECT NUMBER:	88877		
DATE/TIME:		11/10/2022 12:30 SITE: Upland landfill				
PERSONNEL ON SITE:		Joe Cassidy, Liner crew				
WEATHER CONDITION	WEATHER CONDITIONS: Cloudy 1C					
HASP for this project of	an be found	d on project portal				
SITE VISIT OBJECTIVE - Observe construction a						
SITE NOTES / PROGRI -Geotextile, GCL and HI - Geocomposite being pl	OPE liner on	north-west area of landfill yes th end of west slope	terday			
Next Steps						
- continue placing geosythetics on north west area of landfill						
OUTSTANDING INFORMATION / NEW ISSUES:						
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):						
NOTE: All site photos to	be filed in th	ne Project Folder on the Proje	ect Portal.			

NAME:	David Barbour	PROJECT NUMBER:	88877
DATE/TIME:	11/11/2022 12:30	SITE:	Upland landfill
PERSONNEL ON SITE:	Joe Cassidy, Brian Faga	n, Liner crew	
WEATHER CONDITION	Snowing 1C		
HASP for this project ca	an be found on project portal		
SITE VISIT OBJECTIVE - Observe construction a			
	noth west area of landfill floor leachate detection port on north slope	9	
Next Steps			
	allation when weather permits		
OUTSTANDING INFORI	MATION / NEW ISSUES:		
ATTACHMENTS / SKET	CHES (Site Photos To Be Filed Sep	arately):	
NOTE: All site photos to	be filed in the Project Folder on the Pr	roject Portal.	

NAME:	David Barbo	pur NUMBI		88877		
DATE/TIME:	11/11/2022 12	2:30 SITE:		Upland landfill		
PERSONNEL ON SITE:	Joe Cassidy,	Brian Fagan, Liner crew				
WEATHER CONDITION	VEATHER CONDITIONS: Snowing 1C					
HASP for this project c	an be found on project p	oortal				
SITE VISIT OBJECTIVE - Observe construction a						
	noth west area of landfill fl leachate detection port o					
Next Steps						
	tallation when weather per					
OUTSTANDING INFORI	MATION / NEW ISSUES:					
	CHES (Site Photos To E					
NOTE: All site photos to	be filed in the Project Fol-	der on the Project Portal				

NAME:	David Barbour	PROJECT NUMBER:	88877				
DATE/TIME:	11/12/2022 8:00	SITE:	Upland landfill				
PERSONNEL ON SITE:	Joe Cassidy, Brian Faç	Joe Cassidy, Brian Fagan, Liner crew					
WEATHER CONDITION	CONDITIONS: Overcast 1C						
HASP for this project c	an be found on project portal						
SITE VISIT OBJECTIVE - Observe construction a							
- Observe construction a	Cuvilles						
SITE NOTES / PROGRE	- CC-						
	otextile, GCL and HDPE on south we	st area of landfill					
	rench on slope between top of west b		ition berm				
Next Steps							
- complete installation of	geosythetics on south west area of la	andfill					
OUTSTANDING INFORI	MATION / NEW ISSUES:						
ATTACHMENTS / SKET	CHES (Site Photos To Be Filed Se	eparately):					
NOTE: All site what is	he filed in the Project Folder on the	Designat Desited					
INCLE: All SHE DUDIOS TO	be lifed in the Project Folder on the	Project Portal					

NAME:		David Barbour	PROJECT NUMBER:	88877
DATE/TIME:		11/12/2022 8:00	Upland landfill	
PERSONNEL ON SITE:		Joe Cassidy, Brian Fagan, Li	ner crew	
WEATHER CONDITION	IS:	Overcast 1C		
HASP for this project of	an be found	d on project portal		
SITE VISIT OBJECTIVE - Observe construction a				
	otextile, GCL	and HDPE on south west are pe between top of west berm		sition berm
Next Steps				
- complete installation of geosythetics on south west area of landfill				
OUTSTANDING INFORMATION / NEW ISSUES:				
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately): NOTE: All site photos to be filed in the Project Folder on the Project Portal.				
NOTE: All site photos to	be filed in th	e Project Folder on the Project	ect Portal.	

NAME:		David Barbour	PROJECT NUMBER:	88877		
DATE/TIME:		11/14/2022 9:30 SITE: Upland landfill				
PERSONNEL ON SITE:		Joe Cassidy, Brian Faga	n, Liner crew			
WEATHER CONDITIONS: Foggy 0C						
HASP for this project ca	an be found	on project portal				
SITE VISIT OBJECTIVE - Observe construction a						
SITE NOTES / PROGRE						
		5 in south west area of lar n norrth west corner of lar				
-Geotextile and GCL inst	alled in south	west area up edge of fill				
 Installing first HDPE lay Cut DT-7 on panels 45/4 						
•	`	,				
Next Steps						
•						
- complete installation of	geosythetics	on south west area of lan	ndfill			
OUTSTANDING INFOR	MATION / NE	W ISSUES:				
OOTOTANDING INTOK	MATION / NE	W IOOOLO.				
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):						
ATTACHMENTS / SKET	CHES (SILE I	Photos To be Filed Sep	arately):			
NOTE: All site photos to be filed in the Project Folder on the Project Portal.						

DATE/TIME: 11/14/2022 9:30 SITE: Upland landfill PERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew WEATHER CONDITIONS: Foggy 0C HASP for this project can be found on project portal SITE VISIT OBJECTIVE: - Observe construction activities SITE NOTES / PROGRESS: - Crew installed 3 HDPE panels 43-45 in south west area of landfill on Saturday Nov 12. - Crew installed HDPE panels 29-32 on north west corner of landfill on Saturday Nov 12. - Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area - Cut DT-7 on panels 45/46 (Smooth / Texture) and sent to lab Next Steps - complete installation of geosythetics on south west area of landfill OUTSTANDING INFORMATION / NEW ISSUES: ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):	NAME:		David Barbour	PROJECT NUMBER:	88877			
WEATHER CONDITIONS: Foggy 0C HASP for this project can be found on project portal SITE VISIT OBJECTIVE: - Observe construction activities SITE NOTES / PROGRESS: - Crew installed 3 HDPE pannels 43-45 in south west area of landfill on Saturday Nov 12 Crew installed HDPE panels 29-32 on norrth west corner of landfill on Saturday Nov 12 - Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area - Cut DT-7 on panels 45/46 (Smooth / Texture) and sent to lab Next Steps - complete installation of geosythetics on south west area of landfill OUTSTANDING INFORMATION / NEW ISSUES:	DATE/TIME:		11/14/2022 9:30 SITE: Upland landfill					
HASP for this project can be found on project portal SITE VISIT OBJECTIVE: - Observe construction activities SITE NOTES / PROGRESS: - Crew installed 3 HDPE pannels 43-45 in south west area of landfill on Saturday Nov 12. - Crew installed HDPE panels 29-32 on north west corner of landfill on Saturday Nov 12. - Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area - Cut DT-7 on panels 45/46 (Smooth / Texture) and sent to lab Next Steps - complete installation of geosythetics on south west area of landfill OUTSTANDING INFORMATION / NEW ISSUES:	ERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew							
SITE VISIT OBJECTIVE: - Observe construction activities SITE NOTES / PROGRESS: -Crew installed 3 HDPE pannels 43-45 in south west area of landfill on Saturday Nov 12. -Crew installed HDPE panels 29-32 on north west corner of landfill on Saturday Nov 12. -Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area -Cut DT-7 on panels 45/46 (Smooth / Texture) and sent to lab Next Steps - complete installation of geosythetics on south west area of landfill OUTSTANDING INFORMATION / NEW ISSUES:	WEATHER CONDITION	VEATHER CONDITIONS: Foggy 0C						
SITE NOTES / PROGRESS: -Crew installed 3 HDPE pannels 43-45 in south west area of landfill on Saturday Nov 12. -Crew installed HDPE panels 29-32 on norrth west corner of landfill on Saturday Nov 12. -Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area -Cut DT-7 on panels 45/46 (Smooth / Texture) and sent to lab Next Steps - complete installation of geosythetics on south west area of landfill OUTSTANDING INFORMATION / NEW ISSUES:	HASP for this project of	an be found	d on project portal					
-Crew installed 3 HDPE pannels 43-45 in south west area of landfill on Saturday Nov 12. -Crew installed HDPE panels 29-32 on norrth west corner of landfill on Saturday Nov 12 -Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area -Cut DT-7 on panels 45/46 (Smooth / Texture) and sent to lab Next Steps - complete installation of geosythetics on south west area of landfill								
- complete installation of geosythetics on south west area of landfill OUTSTANDING INFORMATION / NEW ISSUES:	-Crew installed 3 HDPE -Crew installed HDPE pa -Geotextile and GCL inst - Installing first HDPE lay	-Crew installed 3 HDPE pannels 43-45 in south west area of landfill on Saturday Nov 12. -Crew installed HDPE panels 29-32 on norrth west corner of landfill on Saturday Nov 12 -Geotextile and GCL installed in south west area up edge of fill around ramp - Installing first HDPE layer on south west area						
OUTSTANDING INFORMATION / NEW ISSUES:	Next Steps							
	- complete installation of geosythetics on south west area of landfill							
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):	OUTSTANDING INFORMATION / NEW ISSUES:							
NOTE: All site photos to be filed in the Project Folder on the Project Portal.								

NAME:		David Barbour	PROJECT NUMBER:	88877
DATE/TIME:		11/15/2022 7:30	SITE:	Upland landfill
PERSONNEL ON SITE:		Joe Cassidy, Brian Fa	agan, Liner crew	
WEATHER CONDITIONS: Sunny 0C				
HASP for this project ca	an be found	on project portal		
SITE VISIT OBJECTIVE - Observe construction and				
SITE NOTES / PROGRE -Grew installing GCL and		outh west area up to e	edge of ramp	
Next Steps - place fill in ramp area to - complete installation of				
OUTSTANDING INFORMATION / NEW ISSUES:				
ATTACHMENTS / SKET				
NOTE: All site photos to	be filed in the	Project Folder on the	e Project Portal.	

NAME:		David Barbour	PROJECT NUMBER:	88877		
DATE/TIME:		11/15/2022 7:30	SITE:	Upland landfill		
PERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew						
WEATHER CONDITION	NEATHER CONDITIONS: Sunny 0C					
HASP for this project o	an be found	d on project portal				
SITE VISIT OBJECTIVE - Observe construction a						
SITE NOTES / PROGRE -Grew installing GCL and		South west area up to e	edge of ramp			
Next Steps - place fill in ramp area to blend grades and allow for anchor trench tie in - complete installation of geosythetics on south west area of landfill						
OUTSTANDING INFORMATION / NEW ISSUES:						
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately): NOTE: All site photos to be filed in the Project Folder on the Project Portal.						

NAME:		David Barbour	PROJECT NUMBER:	88877			
DATE/TIME:		11/16/2022 9:00	SITE:	Upland landfill			
PERSONNEL ON SITE:		Joe Cassidy, Brian Fagan, Li	ner crew				
WEATHER CONDITIONS	S:	Sunny 0C					
HASP for this project ca	an be found	on project portal					
SITE VISIT OBJECTIVE: - Observe construction activities							
-Ramp area filled and ren -Grew installing GCL and	SITE NOTES / PROGRESS: -Ramp area filled and remainder of anchor trench dug on top of west slope -Grew installing GCL and HDPE on South west area were ramp was filled over -Inspected proposed drainrock material in Upland pit wil Terry						
Next Steps							
- complete installation of geosythetics on south west area of landfill							
OUTSTANDING INFORMATION / NEW ISSUES:							
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately): NOTE: All site photos to be filed in the Project Folder on the Project Portal							
NOTE: All site photos to be filed in the Project Folder on the Project Portal.							

NAME:		David Barbour	PROJECT NUMBER:	88877			
DATE/TIME:		11/16/2022 9:00	SITE:	Upland landfill			
PERSONNEL ON SITE:	ERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew						
WEATHER CONDITIONS: Sunny 0C							
HASP for this project of		d on project portal					
SITE VISIT OBJECTIVE: - Observe construction activities							
-Ramp area filled and re -Grew installing GCL and	SITE NOTES / PROGRESS: -Ramp area filled and remainder of anchor trench dug on top of west slope -Grew installing GCL and HDPE on South west area were ramp was filled over -Inspected proposed drainrock material in Upland pit wil Terry						
Next Steps							
- complete installation of geosythetics on south west area of landfill							
OUTSTANDING INFORMATION / NEW ISSUES:							
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):							
NOTE: All site photos to be filed in the Project Folder on the Project Portal.							

NAME:	David Ba	arbour	PROJECT NUMBER:	88877				
DATE/TIME:	11/17/202	2 13:30	SITE:	Upland landfill				
PERSONNEL ON SITE:	ITE: Joe Cassidy, Liner crew, Brian Fagan							
WEATHER CONDITION	/EATHER CONDITIONS: Sunny 3C							
HASP for this project ca	HASP for this project can be found on project portal							
SITE VISIT OBJECTIVE - Observe cnstruction act								
- Observe onstruction dol	avide5							
SITE NOTES / PROGRE					_			
Installing first layer of Ge		PE on former ramp	area on west s	slope				
Next Steps								
-Install remaining geosyth	netic layers in middle o	n former ramp area	a					
OUTSTANDING INFORMATION / NEW ISSUES:								
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately):								
NOTE: All site photos to	be filed in the Project	Folder on the Proje	ect Portal.					
	•							

NAME:		David Barbour	PROJECT NUMBER:	88877			
DATE/TIME:		11/17/2022 13:30	SITE:	Upland landfill			
PERSONNEL ON SITE:		Joe Cassidy, Liner cre	w, Brian Fagan				
WEATHER CONDITION	VEATHER CONDITIONS: Sunny 3C						
HASP for this project of	an be found	l on project portal					
SITE VISIT OBJECTIVE: - Observe cnstruction activities							
SITE NOTES / PROGRI -Installing first layer of G		CL and HDPE on forme	r ramp area on west	slope			
Next Steps							
-Install remaining geosythetic layers in middle on former ramp area							
OUTSTANDING INFORMATION / NEW ISSUES:							
ATTACHMENTS / SKET							

NAME:	David Barbour	PROJECT NUMBER:	88877				
DATE/TIME:	11/18/2022 7:00	SITE:	Upland landfill				
PERSONNEL ON SITE:	ERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew						
WEATHER CONDITION	VEATHER CONDITIONS: Clear Sky -2C						
HASP for this project ca	an be found on project portal						
SITE VISIT OBJECTIVE - Observe construction a							
	ouvidoo						
SITE NOTES / PROGRE							
-Crew installing first layer HDPE	of GCL and HDPE in middle of wes	st slope and panels numb	er 53, 54 and 55 completing first layer of				
Grabbed destructive tes	sts 8 - panels 49/50 of upper HDPE	layer and 9 Panel 53/54 o	of lowerr HDPE layer				
Next Steps							
- Install GCL, Geocompo	site, and HDPE in middle area of we	est slope					
OUTSTANDING INFORM	MATION / NEW ISSUES:						
OUTOTANDING IN ON	MATION / NEW 1000E0.						
ATTACHMENTS / SKET	CHES (Site Photos To Be Filed S	eparately):					
NOTE: All site photos to	be filed in the Project Folder on the	Project Portal.					

NAME:		David Barbour	PROJECT NUMBER:	88877		
DATE/TIME:		11/18/2022 7:00	SITE:	Upland landfill		
ERSONNEL ON SITE: Joe Cassidy, Brian Fagan, Liner crew						
WEATHER CONDITION	VEATHER CONDITIONS: Clear Sky -2C					
HASP for this project of	an be found	d on project portal				
SITE VISIT OBJECTIVE: - Observe construction activities						
HDPE	r of GCL and	d HDPE in middle of west slo		number 53, 54 and 55 completing first layer of 3/54 of lowerr HDPE layer		
Next Steps - Install GCL, Geocomposite, and HDPE in middle area of west slope						
OUTSTANDING INFORMATION / NEW ISSUES:						
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately): NOTE: All site photos to be filed in the Project Folder on the Project Portal.						

NAME:	David Barbou	ır	DJECT MBER:	88877				
DATE/TIME:	11/19/2022 8:	00 SITE	= :	Upland landfill				
PERSONNEL ON SITE:	Joe Cassidy,	Joe Cassidy, Liner crew						
WEATHER CONDITIONS: Sunny -3C								
HASP for this project can be found on project portal								
SITE VISIT OBJECTIVE - Observe construction a								
	on middle of west slope HDPE port on west slope panels numbers 53-56 on r	middle of west slope						
Next Steps								
 Install geocomposite on 	of landfill for geotextile inst west slope mm perforated leachate co							
OUTSTANDING INFOR	MATION / NEW ISSUES:							
ATTACHMENTS / SKET	CHES (Site Photos To Be	Filed Separately):						
NOTE: All site photos to be filed in the Project Folder on the Project Portal.								

NAME:		David Barbour	PROJECT NUMBER:	88877			
DATE/TIME:		11/19/2022 8:00	SITE:	Upland landfill			
ERSONNEL ON SITE: Joe Cassidy, Liner crew							
WEATHER CONDITIONS: Sunny -3C							
HASP for this project of	an be found	d on project portal					
SITE VISIT OBJECTIVE: - Observe construction activities							
-Crew placing final GCL -Installed second 50 mm -Installed final 3.5 HDPE	SITE NOTES / PROGRESS: Crew placing final GCL on middle of west slope Installed second 50 mm HDPE port on west slope Installed final 3.5 HDPE panels numbers 53-56 on middle of west slope Cut destructive test 10 from panels 55/56						
Next Steps - Prep west side of base of landfill for geotextile installation - Install geocomposite on west slope - Install remainder of 200 mm perforated leachate collection pipe							
OUTSTANDING INFORMATION / NEW ISSUES:							
ATTACHMENTS / SKETCHES (Site Photos To Be Filed Separately): NOTE: All site photos to be filed in the Project Folder on the Project Portal.							

→ The Power of Commitment

Appendix C

Cell 1 East, Cell 1 West and Ponds Commissioning Report

Cell 1 East, Cell 1 West & Ponds Commissioning Report

Northwin Landfill

Northwin Environmental

22 March 2024

Project	name	088877 Upland	088877 Upland Landfill									
Docume	ent title	Cell 1 East, Cel	Cell 1 East, Cell 1 West & Ponds Commissioning Report Northwin Landfill									
Project	number	11222680	11222680									
File nan	ne	11222680-RPT	11222680-RPT-3-Cell 1 East, Cell 1 West & Ponds Commissioning Report.docx									
Status Revision		Author	Reviewer		Approved for issue							
Code			Name	Signature	Name	Signature	Date					
S3	00	Toby Wong	Deacon Liddy		Deacon Liddy		January 20, 2023					
S3	01	Deacon Liddy	Deacon Liddy		Rose Marie Rocca		February 22, 2024					
S3	02	Deacon Liddy	Deacon Liddy		Rose Marie Rocca		March 22, 2024					

GHD

138 East 7th Avenue

Vancouver, British Columbia V5T 1M6, Canada

T +1 604 214 0510 | F +1 604 214 0525 | E info-northamerica@ghd.com | ghd.com

© GHD 2024

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

Appendix A Appendix B

Appendix C

1.	Introduct	tion	1
	1.1 F	Purpose of this Report	1
2.	Leachate	Treatment Concept	1
3.	Summary	y of Construction	2
	3.1	Observed Deficiencies and Corrective Actions	2
4.	Commiss	sioning Activities	2
5.	Analytica	al Results	3
6.	Maintena	ince and Performance Monitoring Plan	4
7.	Certificat	tion	5
Tal	ble inde	ex	
Tabl	e 5.1	Summary of Influent Leachate Samples During Commissioning Period	3
Tabl	e 5.2	Summary of Treated Leachate Samples During Commissioning Period	4
Fig	jure ind	lex	
Figu	re 3.1	Leachate Treatment Process	2
dΑ	pendic	es	

Leachate Treatment Works Layout

Laboratory Analytical Reports

Photograph Log

GHD | Northwin Environmental | 11222680 | Cell 1 East, Cell 1 West & Ponds Commissioning Report

1. Introduction

1.1 Purpose of this Report

The Northwin Landfill (landfill) is owned by Upland Excavating Ltd. (Upland) and operated by Northwin Environmental (Northwin). The landfill is located on the Upland property at civic address 7295 and 7311 Gold River Highway, Campbell River, British Columbia (Site), approximately 7 kilometers (km) southwest of Campbell River city centre. The Site operates as a sand, gravel and rock quarry, and a waste management facility.

This Commissioning Report (Report) documents the initial leachate characterization and confirmation of treatment process capabilities during the commissioning period of Cell 1 East and Cell 1 West, carried out by Upland Contracting Ltd. (Contractor), Northwin, and other contractors hired by Upland. The Leachate Treatment Facility (LTF) Commissioning Plan is provided in Appendix F of the 2021 Design, Operation, and Closure Plan (DOCP).

The Report has been prepared by GHD for Upland for submission to the Ministry of Environment and Climate Change Strategy (ENV) fulfilling the requirements of Section 2.6(b) of the Landfill's Operational Certificate 107689 (OC).

Upland, as the OC holder retained GHD to act as the Qualified Professional (QP) for this project scope. In this capacity, GHD reviewed and summarized the sampling results taken during the commissioning period to determine the performance of LTF.

2. Leachate Treatment Concept

The leachate treatment system is designed to treat the landfill leachate to meet the BC Contaminated Sites Regulation (CSR) Schedule 3.2 Drinking Water Criteria (discharge criteria) prior to discharge to the infiltration pond.

A series of perforated pipes installed at the base of the landfill cell convey leachate to the existing Cell 1 East sump and the Cell 1 West sump. Pumps in perforated pipes within the Cell 1 East sump and Cell 1 West sump, pump leachate to the LTF. The pumps are controlled by level transducers.

The LTS is a batch treatment system, generating a batch of effluent for infiltration. To target operation of a weekly batch at the peak daily leachate generation rate, an average batch size is considered to be 625 m³, with the maximum batch size to be 1,400 m³. A batch size may vary, requiring operational adjustments to the treatment system.

The process begins with aerated equalization, where the aerated equalization pond is filled, and undergoes aeration during filling. The leachate is pumped through a shipping container where chemicals for oxidization, pH adjustment and/or coagulation/flocculation can be added inline through injection ports. After chemical addition, leachate can be recirculated to the equalization pond or a clarifier for settling/precipitation of solids. The water is then pumped through a series of sand filters before entering the effluent holding pond and/or pumped through Granular Activated Carbon (GAC) filters. The effluent batch will be held in the effluent holding pond and sampled and sent for laboratory analysis. Following receipt of sample results, the batch will then be pumped to the infiltration pond or recirculated through the treatment steps as required to meet discharge criteria. During operations the batches will be tested periodically to confirm discharge criteria are being met.

The leachate treatment system will reduce the concentration of leachate constituents by the processes described below:

 Aeration oxidizes dissolved metals such as iron and manganese to less soluble forms and produces flocs that will be filtered. Concentrations of other metals present in the leachate that are not readily oxidized in an aeration lagoon will also be reduced when the suspended (not dissolved) components of these metals are filtered in the sand filters. Oxidization can also be enhanced by adding oxidization chemicals.

- Hydrocarbons and volatile organic compounds will be readily volatized in an aeration lagoon thereby reducing the concentration. If concentrations of organic compounds are required to be further reduced, the effluent will be filtered through a GAC filter.
- The dissolved metals will be removed, if required by chemical precipitation, by adding a volume of chemicals (i.e., mild acids or bases) that will cause an increase or decrease of pH of the leachate to facilitate the formation of an insoluble salt.

Should leachate quality change over time and additional leachate constituents require treatment, the process can include a polishing step to continue to meet the CSR Schedule 3.2 Drinking Water Criteria.

3. Summary of Construction

Construction of the LTF was completed with the liner installation on the effluent holding pond on October 19, 2021. The effluent pond was expanded in November with construction completed on November 12, 2021. All components of the LTF were tested by Northwin. GHD observed the functioning of pumps through each stage of the treatment process on December 2, 2021. A drawing of the leachate treatment works layout is provided in Appendix A.

The leachate treatment process is depicted in Figure 3.1 below.

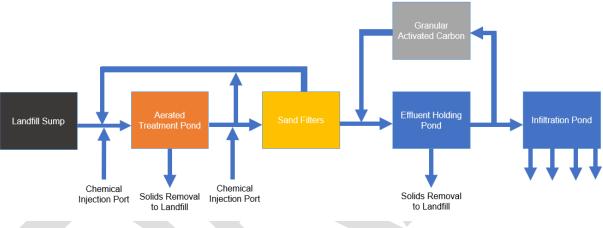


Figure 3.1 Leachate Treatment Process

3.1 Observed Deficiencies and Corrective Actions

The effluent holding pond constructed in October 2021 was undersized. A larger effluent holding pond of appropriate size was constructed in November 2021.

4. Commissioning Activities

The commissioning activities support initial leachate quality characterization and confirm treatment process capabilities, the commissioning activities summarized below.

Clean Water Testing and Equipment Commissioning

Clean water testing was the initial step in the LTF commissioning in the fall of 2021. The hydraulic integrity of all major process ponds, tanks, pumps, piping, and appurtenance was verified via clean water testing prior to the commencement of start-up and commissioning activities. Process equipment (blowers, pumps, and aeration system) was also commissioned by manufacturer representatives prior to start-up activities. All necessary process chemicals were delivered to Site prior to commissioning and all control systems were tested to verify automatic control functions prior to initiation of start-up activities.

Sampling Activities

During the commissioning period, untreated leachate samples were collected from the effluent holding pond prior to discharge to the infiltration pond. This will aid in leachate characterization and establish a baseline for determining the effectiveness of the leachate treatment process.

Samples were analyzed for the comprehensive set of parameters presented in the attached Tables 1 through 4 to confirm the parameters of concern within the leachate.

5. Analytical Results

Influent and treated leachate samples were collected and submitted to ALS Environmental (ALS) in Burnaby, BC. Samples were analysed for one or more of the treatment parameters listed in the LTF Commissioning Plan (refer to Appendix F of the DOCP) which include dissolved metals, hardness, chemical oxygen demand (COD), alkalinity, sulphate, sulphide, sodium, pH, total dissolved solids (TDS), total suspended solids (TSS), and polycyclic aromatic hydrocarbons (PAH). Parameter concentrations were compared to the CSR Schedule 3.2 Drinking Water Criteria. If treated leachate concentrations met the discharge criteria, then the treated leachate was discharged to the infiltration pond. If the discharge criteria were not met, leachate continued treatment.

During the commissioning period between December 2021 to December 2023, 24 sampling events were completed. Influent samples were collected by GHD and are summarized in Table 5.1. Treated leachate samples were collected by Northwin and are summarized in Table 5.2. Laboratory reports are provided in Appendix C.

T-11- E 4	0		- OI D	A	. D1
Table 5.1	Summary of Influe	nt i bachati	n Samniae i ilirina	Lommissioning	PARION

Sample Date	Lab Report No.
June 03, 2021	C138327
November 16, 2021	C188804
April 01, 2022	C221453
June 22, 2022	C244592
September 8, 2022	C268908
November 17, 2022	C268889

Table 5.2 Summary of Treated Leachate Samples During Commissioning Period

Sample Date	Lab Report No.	Discharge Criteria Results	Treatment Continued or Discharged
Decembe <mark>r 8,</mark> 2021	VA21C7462	- 001: Quinoline	Treatment continued
December 15, 2021	VA21C7962	- 001: Quinoline	Treatment continued
January 7, 2022	VA22A0431	- 001: No exceedances	Treatment continued
January 12, 2022	VA22A0612	- 001: No exceedances	Discharged
February 23, 2022	VA22A3490	001: Sulphate, lithium, manganese, benzo(b)pyridine (Quinoline)002: Sulphate	Treatment continued
March 29, 2022	VA22A6872	- 001: Sulfate, manganese, quinoline	Treatment continued
April 11, 2022	VA22A7623	- 001: Sulfate, manganese, quinoline	Treatment continued
June 07, 2022	VA22B2754	- 001: Sulfate	Treatment continued
July 01, 2022	VA22B5020	- 001: Quinoline, cobalt	Treatment continued
July 29, 2022	VA22B7883	- 001: No exceedances	Discharged
July 29, 2022	VA22B7886	- 001: Boron, cobalt, sodium	Treatment continued
November 2, 2022	VA22C6839	- 001: Sulfate, boron, sodium	Treatment continued
February 2, 2023	VA23A2628	- 001: No exceedances	Discharged
February 13, 2023	VA23A3351	- 001: Boron, quinoline	Treatment continued
March 6, 2023	VA23A4848	- 001: Arsenic, boron, quinoline	Treatment continued
March 30, 2023	VA23A6860	- 001: No exceedances	Discharged
		- 002: No exceedances	
April 14, 2023	VA23A8082	- 001: Boron, sodium	Treatment continued
October 23, 2023	VA23C5387	- 001: Sulfate, boron, benzo(a)pyrene, quinoline	Treatment continued
November 21, 2023	VA23C7975	- 001: No exceedances	Discharged
		- 002: No exceedances	
December 11, 2023	VA23C0976	- 001: No exceedances	Discharged
December 18, 2023	VA23D0378	- 001: Benzo(a)pyrene, quinoline	Treatment continued
		- 002: No exceedances	Discharged

6. Maintenance and Performance Monitoring Plan

To assist in the operation and maintenance of the LTF, a Maintenance and Performance Monitoring Plan has been developed to monitor the performance of the LTF and to identify modifications where necessary.

Influent and Chemical Jar Testing

To optimize chemical dosing to suit the influent leachate characteristics, on-site jar testing will be conducted at the same time as clean water testing. Influent samples will be collected to create an initial leachate profile. LTF operators will conduct jar tests with various chemicals and dosages to evaluate the effectiveness and appropriate dose conditions for removal of target parameters. The jar tests will be used to set initial batch volume chemical dosage rates.

Future Sampling Activities

To meet discharge quality objectives, treated leachate will be sampled regularly to develop a relationship between the parameters of concern within the leachate and the batch treatment sampling program, as well as to monitor the performance of the LTF and chemical dosage.

Each batch of effluent will be sampled from the effluent holding pond and analyzed for a comprehensive set of parameters to determine if a batch can be discharged to the infiltration pond. The effluent will only be discharged to the infiltration pond if the effluent meets the CSR Schedule 3.2 DW criteria. Dependent on the analytical sampling results, leachate will either be recirculated back through the treatment process for additional treatment or, if the effluent meets CSR Schedule 3.2 Drinking Water Criteria, discharged into the infiltration pond.

The effluent sampling results will be used to establish the parameter list for compliance sampling throughout the operation of LTF. Based on leachate quality forecasting discussed in the DOCP, the key leachate parameters will be chemical constituents commonly found in construction and demolition waste, and contaminated soil leachate which may include:

- Chloride - Sulphide
- Sulphate - Arsenic
- Boron - Sodium
- Iron - PAHs

Manganese

In addition to sampling to meet discharge quality objectives, leachate will also be sampled to monitor the performance of the treatment process and to observe changes to leachate quality over time as additional waste is added to the landfill. The following parameters may be used to develop an understanding of the system performance and to assist in the operation and maintenance of the LTF:

Chemical Oxygen Demand (COD)
 Alkalinity
 CSR Metals including hardness
 TSS

Northwin and GHD will continue to monitor parameters and observe changes to the leachate quality, if any.

7. Certification

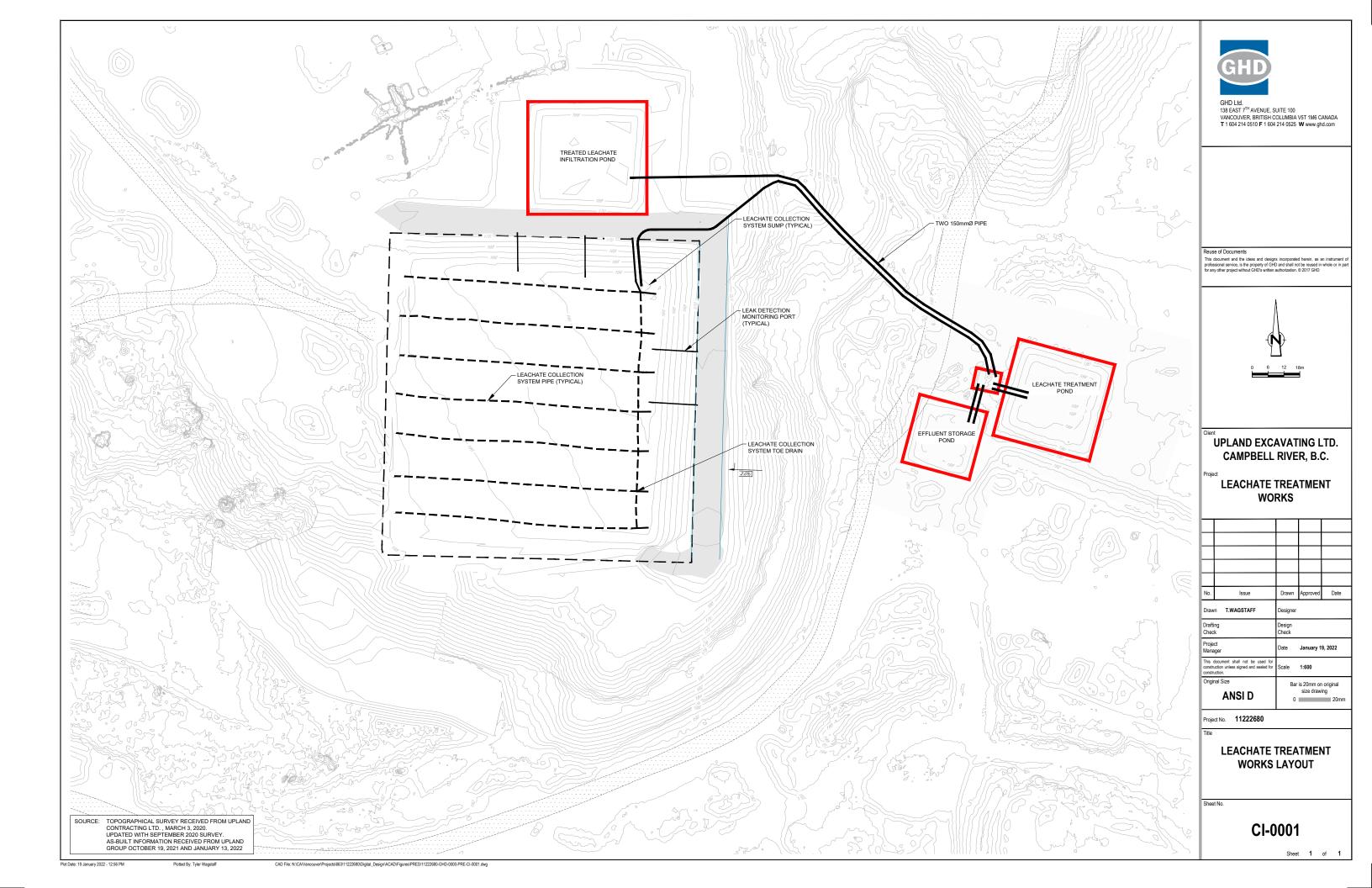
This commissioning report demonstrates that Cell 1 East, Cell 1 West and Ponds have been commissioned in accordance with the OC and the 2021 DOCP. QPs completed inspections before and during commissioning of Cell 1 East, Cell 1 West and the Ponds.

This commissioning report includes the information described in Section 2.6(b) of the OC, and LTF Commissioning Plan presented in the 2021 DOCP, specifically:

- Summary of commission activities including sampling activities
- Summary of analytical results of influent leachate and effluent sampling
- Copy of all calibration reports and laboratory analytical reports
- Comments on any observed deficiencies in the LTF design or performance, and a plan for addressing any such deficiencies
- Maintenance and performance monitoring plan

All of Which is Respectfully Certified and Submitted by:

GHD


Deacon Liddy

Rose Marie Rocca

Appendices

Appendix A

Leachate Treatment Works Layout

Appendix B

Photo Log

Site Photographs



Photo 1 Aerated Treatment Pond

Infiltration Pond

Photo 4 Effluent pond after reconstruction

Photo 5 Leachate inlet / effluent out lines

o 6 Recirculation control valves

Photo 7 Leachate and effluent lines inside treatment container

Photo 8 Typical chemical injection port

Photo 9 Aeration Pond inlet / suction lines

Photo 10 Effluent Pond inlet lines

Appendix C

Laboratory Analytical Reports

CERTIFICATE OF ANALYSIS

Page **Work Order** : VA21C7462 : 1 of 7

Client Northwin Environmental Ltd. Laboratory : Vancouver - Environmental

Account Manager Contact : Mr Brian Fagan : Sneha Sansare

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188 **Date Samples Received** : 09-Dec-2021 13:15

Date Analysis Commenced : 09-Dec-2021

Issue Date : 11-Dec-2021 17:01

Address : 315 - 1434 Ironwood Street

Campbell River BC Canada V9W 5T5

Telephone **Project** C-O-C number

Sampler Site Quote number No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- **Analytical Results**
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Harsha Attanayake	Laboratory Analyst	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 7

Work Order : VA21C7462

Client : Northwin Environmental Ltd.

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic interference due to co-elution.
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

Page : 3 of 7
Work Order : VA21C7462

Client : Northwin Environmental Ltd.

Project : ---

Sub-Matrix: Water Client sample ID					New Landfill	 	
(Matrix: Water)					Holding Pond 08/12/21		
			Client samp	oling date / time	08-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7462-001	 	
					Result	 	
Physical Tests							
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	22.8	 	
Anions and Nutrients							
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	2.84	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0244	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00025	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00537	 	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	6.93	 	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	 	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	 	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00010	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00409	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.017	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000061	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	1.34	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0414	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000220	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	 	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.060	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.287	 	
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	<0.00020	 	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000095	 	

Page : 4 of 7 Work Order : VA21C7462

Client : Northwin Environmental Ltd.

Project : ---

ALS

Sub-Matrix: Water Client sample ID (Matrix: Water)					New Landfill Holding Pond	 	
					08/12/21		
			Client samp	ling date / time	08-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7462-001	 	
					Result	 	
Dissolved Metals							
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.11	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	5.47	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0186	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	0.89	 	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00018	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	0.00096	 	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000013	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00055	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0018	 	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	
Volatile Organic Compounds							
chlorobenzene	108-90-7	E611C	0.50	μg/L	<0.50	 	
chloromethane	74-87-3	E611C	5.0	μg/L	<5.0	 	
dichlorobenzene, 1,2-	95-50-1	E611C	0.50	μg/L	<0.50	 	
dichlorobenzene, 1,3-	541-73-1	E611C	0.50	μg/L	<0.50	 	
dichlorobenzene, 1,4-	106-46-7	E611C	0.50	μg/L	<0.50	 	
dichloropropane, 1,2-	78-87-5	E611C	0.50	μg/L	<0.50	 	
dichloropropylene, cis+trans-1,3-	542-75-6	E611C	0.75	μg/L	<0.75	 	
dichloropropylene, cis-1,3-	10061-01-5	E611C	0.50	μg/L	<0.50	 	
tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.50	μg/L	<0.50	 	
tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.20	μg/L	<0.20	 	
trichloroethane, 1,1,2-	79-00-5	E611C	0.50	μg/L	<0.50	 	
trichlorofluoromethane	79-00-3 75-69-4	E611C	0.50	μg/L	<0.50	 	
dicino diadioni en ane	75-09-4	LOTTO	0.50	μу/∟	-0.00	 	 I

Page : 5 of 7 Work Order : VA21C7462

Client : Northwin Environmental Ltd.

Project : ---

Sub-Matrix: Water				lient sample ID	New Landfill	 	
(Matrix: Water)					Holding Pond 08/12/21		
			Client samp	oling date / time	08-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7462-001	 	
					Result	 	
Volatile Organic Compounds [Drycleaning]							
carbon tetrachloride	56-23-5	E611C	0.50	μg/L	<0.50	 	
chloroethane	75-00-3	E611C	0.50	μg/L	<0.50	 	
dichloroethane, 1,1-	75-34-3	E611C	0.50	μg/L	<0.50	 	
dichloroethane, 1,2-	107-06-2	E611C	0.50	μg/L	<0.50	 	
dichloroethylene, 1,1-	75-35-4	E611C	0.50	μg/L	<0.50	 	
dichloroethylene, cis-1,2-	156-59-2	E611C	0.50	μg/L	<0.50	 	
dichloroethylene, trans-1,2-	156-60-5	E611C	0.50	μg/L	<0.50	 	
dichloromethane	75-09-2	E611C	1.0	μg/L	<1.0	 	
dichloropropylene, trans-1,3-	10061-02-6	E611C	0.50	μg/L	<0.50	 	
tetrachloroethylene	127-18-4	E611C	0.50	μg/L	<0.50	 	
trichloroethane, 1,1,1-	71-55-6	E611C	0.50	μg/L	<0.50	 	
trichloroethylene	79-01-6	E611C	0.50	μg/L	<0.50	 	
vinyl chloride	75-01-4	E611C	0.40	μg/L	<0.40	 	
Volatile Organic Compounds [Fuels]							
benzene	71-43-2	E611C	0.50	μg/L	<0.50	 	
ethylbenzene	100-41-4	E611C	0.50	μg/L	<0.50	 	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.50	μg/L	<0.50	 	
styrene	100-42-5	E611C	0.50	μg/L	<0.50	 	
toluene	108-88-3	E611C	0.40	μg/L	<0.40	 	
xylene, m+p-	179601-23-1	E611C	0.40	μg/L	<0.40	 	
xylene, o-	95-47-6	E611C	0.30	μg/L	<0.30	 	
xylenes, total	1330-20-7	E611C	0.50	μg/L	<0.50	 	
Volatile Organic Compounds [THMs]							
bromodichloromethane	75-27-4	E611C	0.50	μg/L	<0.50	 	
bromoform	75-25-2	E611C	0.50	μg/L	<0.50	 	
chloroform	67-66-3	E611C	0.50	μg/L	<0.50	 	
dibromochloromethane	124-48-1	E611C	0.50	μg/L	<0.50	 	
Volatile Organic Compounds Surrogates							
bromofluorobenzene, 4-	460-00-4	E611C	1.0	%	84.2	 	
difluorobenzene, 1,4-	540-36-3	E611C	1.0	%	101	 	
1	010 00 0		I '	1 1	-		I

Page : 6 of 7
Work Order : VA21C7462

Client : Northwin Environmental Ltd.

Project : ---

ALS

Sub-Matrix: Water (Matrix: Water)					New Landfill Holding Pond 08/12/21	 	
			Client samp	ling date / time	08-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7462-001	 	
					Result	 	
Hydrocarbons							
EPH (C10-C19)		E601A	250	μg/L	<250	 	
EPH (C19-C32)		E601A	250	μg/L	<250	 	
HEPHw		EC600A	250	μg/L	<250	 	
LEPHw		EC600A	250	μg/L	<250	 	
Hydrocarbons Surrogates							
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	1.0	%	90.7	 	
Polycyclic Aromatic Hydrocarbons							
acenaphthene	83-32-9	E641A	0.010	μg/L	0.399	 	
acenaphthylene	208-96-8	E641A	0.010	μg/L	0.012	 	
acridine	260-94-6	E641A	0.010	μg/L	<0.021 DLQ	 	
anthracene	120-12-7	E641A	0.010	μg/L	<0.022 DLCI	 	
benz(a)anthracene	56-55-3	E641A	0.010	μg/L	<0.011 DLQ	 	
benzo(a)pyrene	50-32-8	E641A	0.0050	μg/L	<0.0050	 	
benzo(b+j)fluoranthene		E641A	0.010	μg/L	0.010	 	
benzo(b+j+k)fluoranthene		E641A	0.015	μg/L	<0.015	 	
benzo(g,h,i)perylene	191-24-2	E641A	0.010	μg/L	<0.010	 	
benzo(k)fluoranthene	207-08-9	E641A	0.010	μg/L	<0.010	 	
chrysene	218-01-9	E641A	0.010	μg/L	<0.010	 	
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	μg/L	<0.0050	 	
fluoranthene	206-44-0	E641A	0.010	μg/L	0.112	 	
fluorene	86-73-7	E641A	0.010	μg/L	0.176	 	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	μg/L	<0.010	 	
methylnaphthalene, 1-	90-12-0	E641A	0.010	μg/L	<0.064 DLQ	 	
methylnaphthalene, 2-	91-57-6	E641A	0.010	μg/L	0.032	 	
naphthalene	91-20-3	E641A	0.050	μg/L	0.098	 	
phenanthrene	85-01-8	E641A	0.020	μg/L	0.104	 	
pyrene	129-00-0	E641A	0.010	μg/L	0.055	 	
quinoline	91-22-5	E641A	0.050	μg/L	0.554	 	
Polycyclic Aromatic Hydrocarbons Surrogates							
chrysene-d12	1719-03-5	E641A	0.1	%	101	 	

Page : 7 of 7

Work Order : VA21C7462

Client : Northwin Environmental Ltd.

Project : ---

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	New Landfill Holding Pond 08/12/21	 	
			Client samp	ling date / time	08-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7462-001	 	
				Î	Result	 	
Polycyclic Aromatic Hydrocarbons Surrogates							
naphthalene-d8	1146-65-2	E641A	0.1	%	97.1	 	
phenanthrene-d10	1517-22-2	E641A	0.1	%	111	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

CERTIFICATE OF ANALYSIS

Work Order : VA21C7962

Client : Northwin Environmental Ltd.

Contact : Mr Brian Fagan

Address : 315 - 1434 Ironwood Street

Campbell River BC Canada V9W 5T5

Telephone : ---Project : ----

PO : ----

 C-O-C number
 : -

 Sampler
 : -

 Site
 : -

 Quote number
 : -

No. of samples analysed

No. of samples received

Page : 1 of 7

Laboratory : Vancouver - Environmental

Account Manager : Sneha Sansare

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 15-Dec-2021 20:35

Date Analysis Commenced : 16-Dec-2021

Issue Date : 19-Dec-2021 23:07

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

: 1

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

Page : 2 of 7

Work Order : VA21C7962

Client : Northwin Environmental Ltd.

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic interference due to co-elution.
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

Page : 3 of 7
Work Order : VA21C7962

Client : Northwin Environmental Ltd.

Project : ---

Sub-Matrix: Water			CI	lient sample ID	New Landfill	 	
(Matrix: Water)					Holding Pond 08/12/21		
			Client samp	oling date / time	15-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7962-001	 	
					Result	 	
Physical Tests							
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	29.6	 	
Anions and Nutrients							
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	11.7	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0291	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00035	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00458	 	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.021	 	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000134	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	9.04	 	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	 	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	 	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00016	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00779	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.018	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000112	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	1.71	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0664	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000549	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	 	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.106	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.383	 	
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00025	 	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000097	 	

Page Work Order

: 4 of 7 : VA21C7962

Client : Northwin Environmental Ltd.

Project

Sub-Matrix: Water			Cli	ient sample ID	New Landfill	 	
(Matrix: Water)					Holding Pond 08/12/21		
			Client samp	ling date / time	15-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7962-001	 	
					Result	 	
Dissolved Metals							
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.06	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	8.69	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0311	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	3.78	 	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	0.00106	 	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000016	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00056	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0043	 	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	
Volatile Organic Compounds							
chlorobenzene	108-90-7	E611C	0.50	μg/L	<0.50	 	
chloromethane	74-87-3	E611C	5.0	μg/L	<5.0	 	
dichlorobenzene, 1,2-	95-50-1	E611C	0.50	μg/L	<0.50	 	
dichlorobenzene, 1,3-	541-73-1	E611C	0.50	μg/L	<0.50	 	
dichlorobenzene, 1,4-	106-46-7	E611C	0.50	μg/L	<0.50	 	
dichloropropane, 1,2-	78-87-5	E611C	0.50	μg/L	<0.50	 	
dichloropropylene, cis+trans-1,3-	542-75-6	E611C	0.75	μg/L	<0.75	 	
dichloropropylene, cis-1,3-	10061-01-5	E611C	0.50	μg/L	<0.50	 	
tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.50	μg/L	<0.50	 	
tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.20	μg/L	<0.20	 	
trichloroethane, 1,1,2-	79-00-5	E611C	0.50	μg/L	<0.50	 	
trichlorofluoromethane	75-69-4	E611C	0.50	μg/L	<0.50	 	

Page Work Order : 5 of 7

: VA21C7962 Client

: Northwin Environmental Ltd.

Project

Sub-Matrix: Water			Ci	lient sample ID	New Landfill		 	
(Matrix: Water)					Holding Pond 08/12/21			
			Client samp	oling date / time	15-Dec-2021 04:30		 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7962-001		 	
					Result		 	
Volatile Organic Compounds [Drycleaning]		E0440	0.50		10.50			
carbon tetrachloride	56-23-5	E611C	0.50	μg/L "	<0.50		 	
chloroethane	75-00-3	E611C	0.50	μg/L 	<0.50		 	
dichloroethane, 1,1-	75-34-3	E611C	0.50	μg/L	<0.50		 	
dichloroethane, 1,2-	107-06-2	E611C	0.50	μg/L	<0.50		 	
dichloroethylene, 1,1-	75-35-4	E611C	0.50	μg/L	<0.50		 	
dichloroethylene, cis-1,2-	156-59-2	E611C	0.50	μg/L	<0.50		 	
dichloroethylene, trans-1,2-	156-60-5	E611C	0.50	μg/L	<0.50		 	
dichloromethane	75-09-2	E611C	1.0	μg/L	<1.0		 	
dichloropropylene, trans-1,3-	10061-02-6	E611C	0.50	μg/L	<0.50		 	
tetrachloroethylene	127-18-4	E611C	0.50	μg/L	<0.50		 	
trichloroethane, 1,1,1-	71-55-6	E611C	0.50	μg/L	<0.50		 	
trichloroethylene	79-01-6	E611C	0.50	μg/L	<0.50		 	
vinyl chloride	75-01-4	E611C	0.40	μg/L	<0.40		 	
Volatile Organic Compounds [Fuels]								
benzene	71-43-2	E611C	0.50	μg/L	<0.50		 	
ethylbenzene	100-41-4	E611C	0.50	μg/L	<0.50		 	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.50	μg/L	<0.50		 	
styrene	100-42-5	E611C	0.50	μg/L	<0.50		 	
toluene	108-88-3	E611C	0.40	μg/L	<0.40		 	
xylene, m+p-	179601-23-1	E611C	0.40	μg/L	<0.40		 	
xylene, o-	95-47-6	E611C	0.30	μg/L	<0.30		 	
xylenes, total	1330-20-7	E611C	0.50	μg/L	<0.50		 	
Volatile Organic Compounds [THMs]								
bromodichloromethane	75-27-4	E611C	0.50	μg/L	<0.50		 	
bromoform	75-25-2	E611C	0.50	μg/L	<0.50		 	
chloroform	67-66-3	E611C	0.50	μg/L	<0.50		 	
dibromochloromethane	124-48-1	E611C	0.50	μg/L	<0.50		 	
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	E611C	1.0	%	102		 	
difluorobenzene, 1,4-	540-36-3	E611C	1.0	%	99.8		 	
, .,.	0-10-30-0		1	, ~ I		l		

Page Work Order

: 6 of 7 : VA21C7962

Client : Northwin Environmental Ltd.

Project

Sub-Matrix: Water (Matrix: Water)			CI	ient sample ID	New Landfill Holding Pond 08/12/21	 	
			Client samp	ling date / time	15-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7962-001	 	
					Result	 	
Hydrocarbons							
EPH (C10-C19)		E601A	250	μg/L	<250	 	
EPH (C19-C32)		E601A	250	μg/L	<250	 	
HEPHw		EC600A	250	μg/L	<250	 	
LEPHw		EC600A	250	μg/L	<250	 	
Hydrocarbons Surrogates							
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	1.0	%	89.2	 	
Polycyclic Aromatic Hydrocarbons							
acenaphthene	83-32-9	E641A	0.010	μg/L	0.210	 	
acenaphthylene	208-96-8	E641A	0.010	μg/L	<0.010	 	
acridine	260-94-6	E641A	0.010	μg/L	0.021	 	
anthracene	120-12-7	E641A	0.010	μg/L	<0.020 DLCI	 	
benz(a)anthracene	56-55-3	E641A	0.010	μg/L	<0.010	 	
benzo(a)pyrene	50-32-8	E641A	0.0050	μg/L	<0.0050	 	
benzo(b+j)fluoranthene	n/a	E641A	0.010	μg/L	<0.010	 	
benzo(b+j+k)fluoranthene	n/a	E641A	0.015	μg/L	<0.015	 	
benzo(g,h,i)perylene	191-24-2	E641A	0.010	μg/L	<0.010	 	
benzo(k)fluoranthene	207-08-9	E641A	0.010	μg/L	<0.010	 	
chrysene	218-01-9	E641A	0.010	μg/L	<0.010	 	
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	μg/L	<0.0050	 	
fluoranthene	206-44-0	E641A	0.010	μg/L	0.074	 	
fluorene	86-73-7	E641A	0.010	μg/L	0.086	 	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	μg/L	<0.010	 	
methylnaphthalene, 1-	90-12-0	E641A	0.010	μg/L	<0.050 DLQ	 	
methylnaphthalene, 2-	91-57-6	E641A	0.010	μg/L	0.014	 	
naphthalene	91-20-3	E641A	0.050	μg/L	<0.050	 	
phenanthrene	85-01-8	E641A	0.020	μg/L	0.033	 	
pyrene	129-00-0	E641A	0.010	μg/L	0.039	 	
quinoline	91-22-5	E641A	0.050	μg/L	0.512	 	
	31-22-3	20	0.000	M9'-	3.3.2		
Polycyclic Aromatic Hydrocarbons Surrogates chrysene-d12	1719-03-5	E641A	0.1	%	98.2	 	
on your are	17 19-03-5	LOT 17 (0.1	70	30.2	 	

Page : 7 of 7

Work Order : VA21C7962

Client : Northwin Environmental Ltd.

Project : ---

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	New Landfill Holding Pond 08/12/21	 	
			Client samp	ling date / time	15-Dec-2021 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21C7962-001	 	
					Result	 	
Polycyclic Aromatic Hydrocarbons Surrogates							
naphthalene-d8	1146-65-2	E641A	0.1	%	85.6	 	
phenanthrene-d10	1517-22-2	E641A	0.1	%	105	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

CERTIFICATE OF ANALYSIS

Work Order : **VA22A0431** Page : 1 of 5

Amendment : (Partial Results)

Client : Northwin Environmental Ltd. Laboratory : Vancouver - Environmental

Contact : Mr Brian Fagan Account Manager : Sneha Sansare

: 315 - 1434 Ironwood Street

Campbell River BC Canada V9W 5T5

Address

: 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

: ---- Telephone : +1 604 253 4188 : ---- Date Samples Received : 12-Jan-2022 07:30

 Project
 : -- Date Samples Received
 : 12-Jan-2022 07:

 PO
 : -- Date Analysis Commenced
 : 12-Jan-2022

C-O-C number : ---- Issue Date : 12-Jan-2022 16:32
Sampler : B F

Site : ---Quote number : ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

: 1

- General Comments
- Analytical Results

No. of samples received

No. of samples analysed

Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Christopher Li	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 5
Work Order : VA22A0431

Client : Northwin Environmental Ltd.

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

- No Unit μg/L micrograms per litre	Unit	Description
	-	No Unit
	μg/L	micrograms per litre
mg/L milligrams per litre	mg/L	milligrams per litre

<: less than.

>: greater than

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
VA22A0431-001	Holding Pond	Sample(s) XXX: Water sample(s) for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results may be biased low.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).

Page : 3 of 5 Work Order : VA22A0431

Client : Northwin Environmental Ltd.

Project : ---

Sub-Matrix: Water			Cli	ent sample ID	Holding Pond	 	
(Matrix: Water)							
			Client samp	ling date / time	07-Jan-2022	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A0431-001	 	
	<i>5,</i> 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,				Result	 	
Physical Tests							
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	165	 	
Anions and Nutrients							
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	166	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0112	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00202	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00186	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0228	 	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.857	 	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.000151	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	55.1	 	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000010	 	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	0.00192	 	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00188	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.0553	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.020	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000431	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0025	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	6.68	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.344	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00186	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00364	 	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.074	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	6.65	 	
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00348	 	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000286	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.72	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	35.3	 	

Page : 4 of 5 Work Order : VA22A0431

Client : Northwin Environmental Ltd.

Project : ---

Client sampling date / time 07-Jan-2022	
CAS Number Method LOR Unit VA22A0431-001	
CAS Number Method LOR Unit VA22A0431-001	
Dissolved Metals Strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.240 sulfur, dissolved 7704-34-9 E421 0.50 mg/L 54.3 tellurium, dissolved 13494-80-9 E421 0.00020 mg/L 0.00020 thallium, dissolved 7440-28-0 E421 0.000010 mg/L 0.000014 thorium, dissolved 7440-29-1 E421 0.00010 mg/L 0.00010 tin, dissolved 7440-31-5 E421 0.00010 mg/L 0.00020 titanium, dissolved 7440-32-6 E421 0.00030 mg/L 0.00020 tungsten, dissolved 7440-33-7 E421 0.00010 mg/L 0.00010 tungsten, dissolved 7440-61-1 E421 0.00010 mg/L 0.000272	
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.240 <	
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.240 <	
tellurium, dissolved 13494-80-9 E421 0.00020 mg/L <0.00020	
thallium, dissolved 7440-28-0 E421 0.000010 mg/L 0.000014 </th <th></th>	
thorium, dissolved 7440-29-1 E421 0.00010 mg/L <0.00010 tin, dissolved 7440-31-5 E421 0.00010 mg/L 0.00020 titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00060 □LM tungsten, dissolved 7440-33-7 E421 0.00010 mg/L <0.00010 uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000272	
tin, dissolved 7440-31-5 E421 0.00010 mg/L 0.00020 titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00060 DLM tungsten, dissolved 7440-33-7 E421 0.00010 mg/L <0.00010 uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000272	
titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00060 □LM tungsten, dissolved 7440-33-7 E421 0.00010 mg/L <0.00010 uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000272	
tungsten, dissolved 7440-33-7 E421 0.00010 mg/L <0.00010	
uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000272	
vanadium, dissolved 7440-62-2 E421 0.00050 mg/L 0.00065	
zinc, dissolved 7440-66-6 E421 0.0010 mg/L 0.0207	
zirconium, dissolved 7440-67-7 E421 0.00020 mg/L <0.00020	
dissolved metals filtration location EP421 Field	
Volatile Organic Compounds [Fuels]	
benzene 71-43-2 E611A 0.50 μg/L Not	
Authorised	
ethylbenzene 100-41-4 E611A 0.50 μg/L Not	
Muthorised Authorised Head of the control of	
Authorised	
styrene 100-42-5 E611A 0.50 μg/L Not	
Authorised	
toluene 108-88-3 E611A 0.50 μg/L Not	
Authorised	
Ayrene, III-P- 179801-23-1 LOTTA 0.40 µg/L Not	
xylene, ο- 95-47-6 E611A 0.30 μg/L Not	
Authorised	
xylenes, total 1330-20-7 E611A 0.50 μg/L Not	
Authorised Authorised	
Volatile Organic Compounds Surrogates bromofluorobenzene, 4- 460-00-4 E611A 1.0 Not	
Authorised	
difluorobenzene, 1,4- 540-36-3 E611A 1.0 % Not	
Authorised	

Page : 5 of 5 Work Order : VA22A0431

Client : Northwin Environmental Ltd.

Project : ---

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	Holding Pond	 	
(Matrix: Water)							
Client sampling date / time				07-Jan-2022	 	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A0431-001	 	
					Result	 	
Hydrocarbons							
EPH (C10-C19)		E601A	250	μg/L	Not	 	
					Authorised		
EPH (C19-C32)		E601A	250	μg/L	Not	 	
					Authorised		
VHw (C6-C10)		E581.VH+F1	100	μg/L	Not	 	
					Authorised		
VPHw		EC580A	100	μg/L	Not	 	
					Authorised		
Hydrocarbons Surrogates							
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	1.0	%	Not	 	
					Authorised		
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	Not	 	
					Authorised		

Please refer to the General Comments section for an explanation of any qualifiers detected.

CERTIFICATE OF ANALYSIS

Work Order : VA22A0612

Client : Northwin Environmental Ltd.

Contact : Mr Brian Fagan

Address : 315 - 1434 Ironwood Street

Campbell River BC Canada V9W 5T5

Telephone : ---Project : ----

PO : ----

C-O-C number : ---Sampler : --Site : ---

Quote number : --No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Vancouver - Environmental

Account Manager : Sneha Sansare

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 13-Jan-2022 17:50

Date Analysis Commenced : 13-Jan-2022

Issue Date : 14-Jan-2022 20:23

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Page : 2 of 6 Work Order : VA22A0612

Client : Northwin Environmental Ltd.

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not
	meet acceptance criteria.

Page : 3 of 6 Work Order : VA22A0612

Client : Northwin Environmental Ltd.

Project : ---

Analytical Results

CAS Number Method LOR Unit 12_Jun-2022	Sub-Matrix: Water			Cl	ient sample ID	New Landfill	 	
Arabyte	(Matrix: Water)					Recirc 13/01/22		
Physical Tests Phys				Client samp	ling date / time		 	
Physical Tosts Physical Tosts Physical Color S.50 Mg/L S.5.1	Analyte	CAS Number	Method	LOR	Unit	VA22A0612-001	 	
Narchine sias CaCQ3), dissolved						Result	 	
Anions and Nutrients Sulfate (as SO4) 14808-79-8 E235-SO4 0.30 mg/L 87.3	Physical Tests							
Sulfate (as SO4) 14686-79-8 E235 SO4 0.30 mg/L 87.3 mg/L	hardness (as CaCO3), dissolved		EC100	0.50	mg/L	85.1	 	
Dissolved Metals Saluminum, dissolved 740-90-5								
aluminum, dissolved 7429-05 E421 0.0010 mgl. 0.0079 —	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	87.3	 	
antimony, dissolved 740-36-0 E421 0.00010 mg/L 0.00096 <	Dissolved Metals							
arsenic, dissolved 7440-38-2 E421 0.00010 mg/L 0.00090 barium, dissolved 7440-39-3 E421 0.00010 mg/L 0.00764 beryllium, dissolved 7440-41-7 E421 0.000020 mg/L <0.000050	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0079	 	
barylium, dissolved 7440-33-3 E421 0.00010 mg/L 0.00764 — </th <th>antimony, dissolved</th> <th>7440-36-0</th> <th>E421</th> <th>0.00010</th> <th>mg/L</th> <th>0.00096</th> <th> </th> <th> </th>	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00096	 	
beryllium, dissolved 7440-41-7 E421 0.000020 mg/L <0.000020	arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00090	 	
bismuth, dissolved 7440-89 E421 0.000050 mg/L 0.317	barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00764	 	
boron, dissolved 7440-42-8 E421 0.010 mg/L 0.317	beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	 	
cadmium, dissolved 7440-43-9 E421 0.000050 mg/L 0.0000541	bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 	
calcium, dissolved 7440-70-2 E421 0.050 mg/L 27.5 cesium, dissolved 7440-46-2 E421 0.000010 mg/L 0.000032 chromium, dissolved 7440-47-3 E421 0.00050 mg/L 0.00079 cobalt, dissolved 7440-48-4 E421 0.00010 mg/L 0.00069 copper, dissolved 7440-50-8 E421 0.00020 mg/L 0.0218 iron, dissolved 7439-89-6 E421 0.010 mg/L 0.024 lithium, dissolved 7439-93-2 E421 0.00050 mg/L 0.0013 magnesium, dissolved 7439-93-2 E421 0.0010 mg/L 0.0013 manganesium, dissolved 7439-95-5 E421 0.0050 mg/L 0.013 manganese, dissolved 7439-96-5 E421 0.0050 mg/L 0.140 molybdenum, dissolved 7439-96-5	boron, dissolved	7440-42-8	E421	0.010	mg/L	0.317	 	
cesium, dissolved 7440.46-2 E421 0.00010 mg/L 0.000032 <	cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000541	 	
chromium, dissolved 7440-47-3 E421 0.00050 mg/L 0.00079	calcium, dissolved	7440-70-2	E421	0.050	mg/L	27.5	 	
cobalt, dissolved 7440-48-4 E421 0.00010 mg/L 0.00069 <t< th=""><th>cesium, dissolved</th><td>7440-46-2</td><td>E421</td><td>0.000010</td><td>mg/L</td><td>0.000032</td><td> </td><td> </td></t<>	cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000032	 	
copper, dissolved 7440-50-8 E421 0.00020 mg/L 0.0218	chromium, dissolved	7440-47-3	E421	0.00050	mg/L	0.00079	 	
iron, dissolved 7439-89-6 E421 0.010 mg/L 0.024	cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00069	 	
Lead, dissolved	copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.0218	 	
lithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.0013 <th< th=""><th>iron, dissolved</th><th>7439-89-6</th><th>E421</th><th>0.010</th><th>mg/L</th><th>0.024</th><th> </th><th> </th></th<>	iron, dissolved	7439-89-6	E421	0.010	mg/L	0.024	 	
magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 4.00 <th< th=""><th>lead, dissolved</th><th>7439-92-1</th><th>E421</th><th>0.000050</th><th>mg/L</th><th>0.000785</th><th> </th><th> </th></th<>	lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000785	 	
manganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.140 <	lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0013	 	
molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L 0.000956	magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	4.00	 	
nickel, dissolved 7440-02-0 E421 0.00050 mg/L 0.00167 <t< th=""><th>manganese, dissolved</th><th>7439-96-5</th><th>E421</th><th>0.00010</th><th>mg/L</th><th>0.140</th><th> </th><th> </th></t<>	manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.140	 	
phosphorus, dissolved 7723-14-0 E421 0.050 mg/L 0.113 <t< th=""><th>molybdenum, dissolved</th><th>7439-98-7</th><th>E421</th><th>0.000050</th><th>mg/L</th><th>0.000956</th><th> </th><th> </th></t<>	molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000956	 	
potassium, dissolved 7440-09-7 E421 0.050 mg/L 3.76	nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00167	 	
rubidium, dissolved 7440-17-7 E421 0.00020 mg/L 0.00263	phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.113	 	
selenium, dissolved 7782-49-2 E421 0.000050 mg/L 0.000140	potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.76	 	
silicon, dissolved 7440-21-3 E421 0.050 mg/L 1.10	rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00263	 	
1.10 2.10	selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000140	 	
	silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.10	 	
Silver, uissouveu	silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	

Page : 4 of 6 Work Order : VA22A0612

Client : Northwin Environmental Ltd.

Project : ---

ALS

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	New Landfill	 	
(Matrix: Water)					Recirc 13/01/22		
			Client samp	ling date / time	12-Jan-2022 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A0612-001	 	
					Result	 	
Dissolved Metals							
sodium, dissolved	7440-23-5	E421	0.050	mg/L	20.6	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.127	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	30.8	 	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00014	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000092	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0157	 	
zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	 	
dissolved metals filtration location		EP421	-	-	Field	 	
Volatile Organic Compounds							
chlorobenzene	108-90-7	E611C	0.50	μg/L	<0.50	 	
chloromethane	74-87-3	E611C	5.0	μg/L	<5.0	 	
dichlorobenzene, 1,2-	95-50-1	E611C	0.50	μg/L	<0.50	 	
dichlorobenzene, 1,3-	541-73-1	E611C	0.50	μg/L	<0.50	 	
dichlorobenzene, 1,4-	106-46-7	E611C	0.50	μg/L	<0.50	 	
dichloropropane, 1,2-	78-87-5	E611C	0.50	μg/L	<0.50	 	
dichloropropylene, cis+trans-1,3-	542-75-6	E611C	0.75	μg/L	<0.75	 	
dichloropropylene, cis-1,3-	10061-01-5	E611C	0.50	μg/L	<0.50	 	
tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.50	μg/L	<0.50	 	
tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.20	μg/L	<0.20	 	
trichloroethane, 1,1,2-	79-00-5	E611C	0.50	μg/L	<0.50	 	
trichlorofluoromethane	75-69-4	E611C	0.50	μg/L	<0.50	 	
Volatile Organic Compounds [Drycleaning]							
carbon tetrachloride	56-23-5	E611C	0.50	μg/L	<0.50	 	
chloroethane	75-00-3	E611C	0.50	μg/L	<0.50	 	
dichloroethane, 1,1-	75-34-3	E611C	0.50	μg/L	<0.50	 	

Page : 5 of 6 Work Order : VA22A0612

Client : Northwin Environmental Ltd.

Project : ---

Analytical Results

Sub-Matrix: Water			Ci	lient sample ID	New Landfill	 	
(Matrix: Water)					Recirc 13/01/22		
			Client samp	oling date / time	12-Jan-2022 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A0612-001	 	
					Result	 	
Volatile Organic Compounds [Drycleaning]							
dichloroethane, 1,2-	107-06-2	E611C	0.50	μg/L	<0.50	 	
dichloroethylene, 1,1-	75-35-4	E611C	0.50	μg/L	<0.50	 	
dichloroethylene, cis-1,2-	156-59-2	E611C	0.50	μg/L	<0.50	 	
dichloroethylene, trans-1,2-	156-60-5	E611C	0.50	μg/L	<0.50	 	
dichloromethane	75-09-2	E611C	1.0	μg/L	<1.0	 	
dichloropropylene, trans-1,3-	10061-02-6	E611C	0.50	μg/L	<0.50	 	
tetrachloroethylene	127-18-4	E611C	0.50	μg/L	<0.50	 	
trichloroethane, 1,1,1-	71-55-6	E611C	0.50	μg/L	<0.50	 	
trichloroethylene	79-01-6	E611C	0.50	μg/L	<0.50	 	
vinyl chloride	75-01-4	E611C	0.40	μg/L	<0.40	 	
Volatile Organic Compounds [Fuels]							
benzene	71-43-2	E611C	0.50	μg/L	<0.50	 	
ethylbenzene	100-41-4	E611C	0.50	μg/L	<0.50	 	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.50	μg/L	<0.50	 	
styrene	100-42-5	E611C	0.50	μg/L	<0.50	 	
toluene	108-88-3	E611C	0.40	μg/L	0.69	 	
xylene, m+p-	179601-23-1	E611C	0.40	μg/L	<0.40	 	
xylene, o-	95-47-6	E611C	0.30	μg/L	<0.30	 	
xylenes, total	1330-20-7	E611C	0.50	μg/L	<0.50	 	
Volatile Organic Compounds [THMs]							
bromodichloromethane	75-27-4	E611C	0.50	μg/L	<0.50	 	
bromoform	75-25-2	E611C	0.50	μg/L	<0.50	 	
chloroform	67-66-3	E611C	0.50	μg/L	3.28	 	
dibromochloromethane	124-48-1	E611C	0.50	μg/L	<0.50	 	
Hydrocarbons							
EPH (C10-C19)		E601A	250	μg/L	<250	 	
EPH (C19-C32)		E601A	250	μg/L	<250	 	
HEPHw		EC600A	250	μg/L	<250	 	
LEPHw		EC600A	250	μg/L	<250	 	
Hydrocarbons Surrogates							
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	1.0	%	64.2	 	
T. Control of the Con	I		1	1	l		1

Page : 6 of 6
Work Order : VA22A0612

Client : Northwin Environmental Ltd.

Project : ---

Analytical Results

Sub-Matrix: Water			CI	lient sample ID	New Landfill	 	
(Matrix: Water)					Recirc 13/01/22		
			Client samp	oling date / time	12-Jan-2022 04:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA22A0612-001	 	
					Result	 	
Polycyclic Aromatic Hydrocarbons					210		
acenaphthene	83-32-9	E641A	0.010	μg/L	<0.035 DLQ	 	
acenaphthylene	208-96-8	E641A	0.010	μg/L	<0.010	 	
acridine	260-94-6	E641A	0.010	μg/L	<0.010	 	
anthracene	120-12-7	E641A	0.010	μg/L	<0.010	 	
benz(a)anthracene	56-55-3	E641A	0.010	μg/L	<0.010	 	
benzo(a)pyrene	50-32-8	E641A	0.0050	μg/L	<0.0050	 	
benzo(b+j)fluoranthene	n/a	E641A	0.010	μg/L	<0.010	 	
benzo(b+j+k)fluoranthene	n/a	E641A	0.015	μg/L	<0.015	 	
benzo(g,h,i)perylene	191-24-2	E641A	0.010	μg/L	<0.010	 	
benzo(k)fluoranthene	207-08-9	E641A	0.010	μg/L	<0.010	 	
chrysene	218-01-9	E641A	0.010	μg/L	<0.010	 	
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	μg/L	<0.0050	 	
fluoranthene	206-44-0	E641A	0.010	μg/L	<0.010	 	
fluorene	86-73-7	E641A	0.010	μg/L	<0.010	 	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	μg/L	<0.010	 	
methylnaphthalene, 1-	90-12-0	E641A	0.010	μg/L	0.108	 	
methylnaphthalene, 2-	91-57-6	E641A	0.010	μg/L	0.277	 	
naphthalene	91-20-3	E641A	0.050	μg/L	0.233	 	
phenanthrene	85-01-8	E641A	0.020	μg/L	<0.020	 	
pyrene	129-00-0	E641A	0.010	μg/L	<0.010	 	
quinoline	91-22-5	E641A	0.050	μg/L	<0.050	 	
Polycyclic Aromatic Hydrocarbons Surrogates							
chrysene-d12	1719-03-5	E641A	0.1	%	108	 	
naphthalene-d8	1146-65-2	E641A	0.1	%	98.9	 	
phenanthrene-d10	1517-22-2	E641A	0.1	%	106	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Appendix D

2023 Annual Status Form

Annual Compliance Status Form

AUTHORIZATION NUMBER: 107689 AUTHORIZATION TYPE: Operational Certificate LEGAL AUTHORIZATION HOLDER NAME: Upland Excavating Ltd. PERIOD OF COMPLIANCE STATUS ASSESSMENT: 2023-01-01 to 2023-12-31

AUTHORIZED PERSON NAME:

Terry Stuart AUTHORIZED PERSON SIGNATURE: SIGNATURE DATE: 2024-03-28

I understand that it is an offense to mislead a government official, and I declare that all of the information presented is accurate and true. I have been given the authority by the authorization holder to sign this form.

AUTHORIZATION CLAUSE NUMBER	AUTHORIZATION CLAUSE DESCRIPTION	COMPLIANT? (Yes/No/ND)	RATIONALE FOR YOUR COMPLIANCE DETERMINATION	LOCATION OF SUPPORTING INFORMATION IN ANNUAL REPORT
1.1.1	The maximum rate of waste discharge to the Original Lined Cell is 45,000 tonnes per calendar year.	Yes	N/A - waste was not discharged to the Original Landfill in 2023. Operations ceased at the Original Landfill in September 2022 and waste was removed and placed into the New Landfill from April to June 2023. Decomissioning activities were completed in June 2023.	Refer to Section 1.2 of the annual report.
1.1.2	The characteristics of the waste discharge to the Original Lined Cell must be: (a) demolition waste, (b) construction waste, (c) land clearing waste,	Yes		Refer to Section 1.2 of the annual report.
	 (d) soil in which the concentrations of all substances are less than the lowest applicable industrial land use standard specified for those substances in (i) the generic numerical soil standards, (ii) the matrix numerical soil standards, or (iii) a director's interim standard for soil, referred to in section 41(1)(a) of the Contaminated Sites Regulation, B.C. Reg. 375/96, (e) sludge from the Original Leachate Management Works, or, 			
1.1.3	(f) other waste as authorized in writing by the director, but does not include: (g) hazardous waste except as authorized pursuant to the Hazardous Waste Regulation, controlled waste, Attractants, and, The waste discharge is authorized to the Original Lined Cell approximately located as shown on Site Plan A. Waste discharge to the Original Unlined Cell is not authorized.	Yes	ceased at the Original Landfill in September 2022 and waste was removed and	Refer to Section 1.2 of the annual report.
1.1.4	Authorization to discharge waste to the Original Lined Cell ceases on the earlier of: (i) the date the Original Lined Cell is filled to capacity with grades not steeper than 3H:1V (33%),	Yes	placed into the New Landfill from April to June 2023. Decomissioning activities were completed in June 2023 N/A - waste was not discharged to the Original Landfill in 2023. Operations ceased at the Original Landfill in September 2022 and waste was removed and	Refer to Section 1.2 of the annual report.
1.1.5	(ii) the date of commencement of waste discharge to the New Landfill. The authorized works are: (i) a lined landfill footprint with a maximum area of 0.72 ha (85 m x 85 m) including from bottom to top a base with perimeter berm, 0.3 m sand cushion layer, 0.5 mm thick coated woven polyethylene liner, 0.3 m granular leak detection layer, leak detection riser pipe, 0.5 mm thick coated woven polyethylene liner, 0.3 m sand protection layer, leachate extraction chamber, final cover, and, (ii) an un-lined landfill footprint with an approximate area of 0.7 ha, final cover,	Yes	placed into the New Landfill from April to June 2023. Decomissioning activities were completed in June 2023. N/A - Presently, the New Landfill includes two cells: Cell 1 East and Cell 1 West. Cell 1 West was constructed in 2022. Both cells include a double liner system, leak detection layer, and leachate management works.	Refer to Section 2.1 of the annual report.
1.1.6	The operational certificate holder must ensure the Original Landfill, excluding final cover, is complete and fully operational on or before the date of issuance of this operational certificate, and at all times thereafter, until the Original Landfill is decommissioned in compliance with the plan referred to in section 2.9(a) (plan to remove all waste from the Original Landfill) of this operational certificate.	Yes	ceased at the Original Landfill in September 2022 and waste was removed and placed into the New Landfill from April to June 2023. Decomissioning activities	Refer to Section 1.2 of the annual report.
1.2.1	The operational certificate holder must convey the leachate from the Original Lined Cell, that is to be discharged on the Facility site, to the Original Leachate Management Works.	Yes	were completed in June 2023 N/A - Northwin collected, treated, and discharged leachate including batches of leachate from the Original Landfill to the New Landfill. Treated leachate effluent was sampled by Northwin throughout the year.	
1.2.2	The maximum rate of treated leachate effluent discharge to the treated leachate infiltration pond is 7,139 m3 per calendar year. The concentration of any substance in the treated leachate effluent discharge to the treated leachate infiltration pond must not be greater than the Contaminated Sites Regulation Generic Numerical Water Standards for Drinking Water (DW), for that substance.	Yes	· ·	Refer to Section 2.8 of the annual report Refer to Section 2.8 of the annual report.
1.2.4	The treated leachate effluent is authorized to be discharged to the treated leachate infiltration pond and infiltrated into the ground. This authorization ceases on the date the Original Leachate Management Works are decommissioned in compliance with the plan referred to in section 2.9(a) (plan to remove all waste from the Original Landfill) of this operational certificate.	Yes	N/A	Refer to Section 2.2 of the annual report .
1.2.6	Minimum Freeboard must be maintained at all times as follows: treated leachate infiltration pond: 0.6 m. The operational certificate holder must ensure the Original Leachate Management Works are complete and fully operational on or before the	Yes	N/A - waste was not discharged to the Original Landfill in 2023. Operations	Refer to Section 2.2 of the annual report . Refer to Section 1.2 of the annual report.
1.3.1	date of commencement of discharge to the treated leachate infiltration pond, and at all times thereafter, until the Original Leachate Management Works are decommissioned in compliance with the plan referred to in section 2.9(a) (plan to remove all waste from the Original Landfill) of this operational certificate The maximum rate of waste discharge to the New Landfill is 45,000 tonnes per calendar year.	Yes	ceased at the Original Landfill in September 2022 and waste was removed and placed into the New Landfill from April to June 2023. Decomissioning activities were completed in June 2023. N/A - New Landfill accepted approximately 38,327 tonnes in 2023. Note	Refer to Section 2.6 of the annual report.
1.3.1	The maximum rate of waste discharge to the New Landini is 45,000 tollies per calendar year.	res	Operational Certificate 107689 Section 1.3.1 states "The maximum rate of waster discharge to the New Landfill is: (45,000 minus the waster discharge to the Original Lined Cell) tonnes per calendar year". Since waste was not discharged to the Original Landfill in 2023 and operations ceased at the Original Landfill in September 2022. The maximum waster discharge rate of 45,000 tonnes per	·
1.3.2	The characteristics of the waste discharge to the New Landfill must be: (a) demolition waste, (b) construction waste, (c) land clearing waste, (d) soil in which the concentrations of all substances are less than the lowest applicable industrial land use standard specified for those	Yes	N/A	Refer to Section 2.6 of the annual report.
	substances in (i) the generic numerical soil standards, (ii) the matrix numerical soil standards, or (iii) a director's interim standard for soil, referred to in section 41(1)(a) of the Contaminated Sites Regulation, B.C. Reg. 375/96, (e) sludge from the New Leachate Management Works or the New Stormwater Management Works, or, (f) other waste as authorized in writing by the director, but does not include:			
1.3.3	(g) hazardous waste except as authorized pursuant to the Hazardous Waste Regulation, controlled waste, Attractants, and, The waste discharge is authorized to the New Landfill approximately located as shown on Site Plan A.	Yes		Refer to Section 2.6 of the annual report
1.3.6	The operational certificate holder must ensure the New Landfill, excluding final cover, is complete and fully operational on or before the date of commencement of waste discharge to the New Landfill, and at all times thereafter. The operational certificate holder must convey the leachate from the New Landfill, that is to be discharged on the Facility site, to the New	Yes	N/A - Leachate is collected within Cell 1 East (and stormwater from Cell 1 West)	Refer to Section 2.1 of the annual report. Refer to Section 2.2 of the annual report.
1.4.2	Leachate Management Works. The maximum rate of treated leachate effluent discharge to the treated leachate infiltration pond is 24,633 m3 per calendar year.	Yes	in a series of perforated pipes installed at the base of the cell and discharges to a sump. Leachate is stored temporarily in the landfill and pumped from the sump to the leachate treatment pond for batch treatment. N/A - Details regarding treated leachate effluent quality is provided in the Cell 1	
1.4.3	The concentration of any substance in the treated leachate effluent discharge to the treated leachate infiltration pond must not be greater than the Contaminated Sites Regulation Generic Numerical Water Standards for Drinking Water (DW), for that substance.	Yes	East & Ponds Commissioning Report. N/A - Details regarding treated leachate effluent quality is provided in the Cell 1 East & Ponds Commissioning Report.	Refer to Section 2.8 of the annual report.
1.4.4	The treated leachate effluent is authorized to be discharged to the treated leachate infiltration pond and infiltrated into the ground. The authorized works are leachate conveyance, treatment and discharge works including pumps, pipes, leachate treatment pond(s), treated leachate infiltration pond, flow monitoring works, and related appurtenances approximately located as shown on Site Plan A.	Yes	N/A - Details regarding treated leachate effluent quality is provided in the Cell 1 East & Ponds Commissioning Report. N/A - The new leachate management works include leachate collection, extraction, storage, treatment, and infiltration. A process schematic of the new leachate management works is provided in Section 2.2 of the annual report.	Refer to Section 2.8 of the annual report. Refer to Section 2.2 of the annual report.
1.4.7	Minimum Freeboard must be maintained at all times as follows: leachate treatment pond(s): 0.6 m	Yes	N/A	
1.4.8	treated leachate infiltration pond: 0.6 m The operational certificate holder must ensure the New Leachate Management Works are complete and fully operational on or before the date of commencement of waste discharge to the New Landfill, and at all times thereafter	Yes	N/A	Refer to Section 2.2 of the annual report.
1.5.1	The operational certificate holder must manage stormwater from the New Landfill such that stormwater is infiltrated into the ground with the authorized works. The stormwater must not include leachate and the concentration of any substance in the stormwater must not be greater than the	Yes	N/A - The perimeter stormwater ditches will be established and included in the	Refer to Section 2.3 of the annual report. Refer to Section 6.4 of the annual report.
1.5.4	Contaminated Sites Regulation Generic Numerical Water Standards for Drinking Water (DW), for that substance Minimum Freeboard must be maintained at all times as follows: stormwater infiltration area: 0.6 m all other authorized works: 0.3 m	Yes	EMP once final cover is placed. N/A	
1.5.5	The operational certificate holder must ensure that adequate authorized works to manage stormwater, such that stormwater is infiltrated into the ground with the authorized works, are complete and fully operational on or before the date of commencement of waste discharge to the New Landfill, and at all times thereafter.	Yes	N/A	Refer to Section 3.2 of the annual report.
2.70		Yes	N/A	Refer to Section 3.2 of the annual report.
2.11	and, (iii) characterization of the soil in accordance with ministry procedures and applicable Contaminated Sites Regulation Guidance, Protocols and The operational certificate holder must cause a Qualified Professional to carry out inspections before and during the construction or modification of Significant Works, and, after the completion of construction or modification of Significant Works, to certify and submit construction report(s) to the director for all Significant Works, on or before 60 days after the completion of construction or modification of the	Yes		Refer to Sections 2.1 of the annual report (i.e., construction reports).
2.12 3.1	Significant Works The operational certificate holder must notify the director of the date of commencement of waste discharge to the New Landfill, on that date. The operational certificate holder must provide and install multiple and/or spare works and auxiliary power facilities to ensure the Original Lined Cell, Original Leachate Management Works, New Landfill, New Leachate Management Works, and New Storm water Management Works, are	Yes	N/A N/A	
3.2	complete and fully operational as specified in this operational certificate, including during maintenance, breakdowns and electrical power outages The operational certificate holder must cause persons that are qualified and trained to operate, regularly inspect, and maintain the Facility, in good working order. If components of the Facility have a manufacturer's recommended maintenance schedule, then those components must, at	Yes	N/A	
3.2	a minimum, be maintained in accordance with that schedule. The operational certificate holder must prepare documents of the qualification and training of the persons operating, inspecting and maintaining the Facility, and of Facility inspections, operation and maintenance.	Yes	N/A	
3.3	The operational certificate holder must ensure that at least one person responsible for the management of the Facility is certified, and maintains certification, by The Solid Waste Association of North America (SWANA) as a Manager of Landfill Operations, and at least one person responsible for the operation of the Facility has, within the preceding five years, successfully completed the SWANA Landfill Operations Basics course, on or before the earlier of: (i) the date of commencement of waste discharge to the Original Lined Cell,	Yes	N/A	
3.3	(ii) the date of commencement of waste discharge to the New Landfill, The operational certificate holder must prepare documents of the SWANA certification and training of the person(s) responsible for the management and operation of the Facility.	Yes	N/A	
3.5	The operational certificate holder must ensure that the Facility does not cause the concentration of any substance in groundwater flowing from the Facility site boundary to be greater than: (i) the Contaminated Sites Regulation Generic Numerical Water Standards for Drinking Water (DW), for that substance, or			Refer to Section 6.3 of the annual report.
	(ii) if the local background concentration of any substance is greater than (i) the local background concentration of that substance	IVos —	N/A	
3.7	The operational certificate holder must ensure that the Facility does not cause a nuisance including with regard to birds, rodents, insects, odour, noise, dust, litter, vector and wildlife attraction. The operational certificate holder must prepare documents of complaints with regard to matters relevant to this operational certificate,	Yes	N/A	
	The operational certificate holder must ensure that the Facility does not cause a nuisance including with regard to birds, rodents, insects, odour, noise, dust, litter, vector and wildlife attraction. The operational certificate holder must prepare documents of complaints with regard to matters relevant to this operational certificate, including environmental and nuisance complaints. These documents must include the source and nature of the complaint, actions, responses, and corresponding dates and times. The operational certificate holder must carry out required sampling in accordance with the procedures described in the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples,		N/A - Refer to Section 5.5 of the annual report.	
3.8	The operational certificate holder must ensure that the Facility does not cause a nuisance including with regard to birds, rodents, insects, odour, noise, dust, litter, vector and wildlife attraction. The operational certificate holder must prepare documents of complaints with regard to matters relevant to this operational certificate, including environmental and nuisance complaints. These documents must include the source and nature of the complaint, actions, responses, and corresponding dates and times. The operational certificate holder must carry out required sampling in accordance with the procedures described in the "British Columbia Field"	Yes	N/A - Refer to Section 5.5 of the annual report. N/A	Refer to Sections 5.4 of the annual report. Refer to Section 5.6 and 6 of the annual report.

AUTHORIZATION CLAUSE NUMBER	AUTHORIZATION CLAUSE DESCRIPTION	COMPLIANT? (Yes/No/ND)	RATIONALE FOR YOUR COMPLIANCE DETERMINATION	LOCATION OF SUPPORTING INFORMATION IN ANNUAL REPORT
4.3	The operational certificate holder must submit samples to analytical laboratory(ies) that meet the definition of a qualified laboratory under the Environmental Data Quality Assurance Regulation.	Yes	N/A - Analytical services were provided by Bureau Veritas Laboratories (BV) of Burnaby, BC.	Refer to Section 4.6 and 6 of the annual report.
4.3	The operational certificate holder must collect, prepare and submit for analysis by the analytical laboratory(ies) quality control (QC) samples for each parameter. As a minimum, the number of QC samples should be 20% of all samples collected (environmental + QC samples) within 48 hours of each other, and include duplicate, field and trip blank samples for each parameter.	Yes	N/A -A qualified GHD chemist completed data verification to assess laboratory and field QA/QC measures.	Refer to Section 4.7 and Appendix G of the annual report.
5.2	The operational certificate holder must immediately notify the director or designate by email at EnvironmentalCompliance@gov.bc.ca, or as otherwise instructed by the director of any non-compliance with the requirements of this authorization by the operational certificate holder and must take remedial action to remedy any effects of such non-compliance.	Yes	N/A - No non-compliances or public complaints.	Refer to Section 2.9 of the annual report.
5.2	The operational certificate holder must provide the director with written confirmation of all non-compliance events, including available test results within 24 hours of the original notification by email at EnvironmentalCompliance@gov.bc.ca, or as otherwise instructed by the director.	Yes	N/A - No non-compliances or public complaints.	Refer to Section 2.9 of the annual report.
5.3	If the operational certificate holder fails to comply with any of the requirements of this authorization, the operational certificate holder must, within 30 days of such non-compliance, submit to the director a written report that is satisfactory to the director and includes, but is not necessarily limited to, the following: (i) all relevant test results obtained by the operational certificate holder related to the non-compliance, ii) an explanation of the most probable cause(s) of the non-compliance, and (iii) a description of remedial action planned and/or taken by the operational certificate holder to prevent similar non-compliance(s) in the future	Yes	N/A - No non-compliances or public complaints.	Refer to Section 2.9 of the annual report.
5.3	The operational certificate holder must submit all non-compliance reporting required to be submitted under this section by email to the Ministry's Compliance Reporting Submission Mailbox at EnvironmentalCompliance@gov.bc.ca or as otherwise instructed by the director.	Yes	N/A - No non-compliances or public complaints.	Refer to Section 2.9 of the annual report.
5.4	The operational certificate holder must cause a Qualified Professional to certify and submit an Annual Operations and Monitoring Report in a format suitable for public release, for the preceding calendar year, to the director on or before March 31 of each year. On or before March 31 of each year, the operational certificate holder must post a copy of the Annual Operations and Monitoring Report online, on a website accessible to	Yes	N/A	
5.4	the public, and in accordance with any requirements of the director. The Annual Operations and Monitoring Report must include a summary of OCP implementation that addresses the information in section 2.3(b), and summary of DOCP implementation that addresses the information in 2.5(b), of this operational certificate.	Yes	N/A	Refer to Section 2.3 of the annual report.
5.4	The Annual Operations and Monitoring Report must include a summary of construction reports.	Yes	N/A	Refer to Section 2.5 of the annual report.
5.4	The Annual Operations and Monitoring Report must include annual and cumulative tonnages and categories of waste including soil tonnage(s) and soil quality class(es) discharged to the Original Lined Cell and to the New Landfill.	Yes	N/A	Refer to Section 2.6 of the annual report.
5.4	The Annual Operations and Monitoring Report must include remaining volume and life of the Original Lined Cell and of the New Landfill.	Yes	N/A - the decommissioning of the Original Landfill began in 2022.	Refer to Section 2.7 of the annual report.
5.4	The Annual Operations and Monitoring Report must include a summary of treated leachate effluent quantity and quality discharged to the treated leachate infiltration pond.	Yes	N/A	Refer to Section 2.7 and 3.8 of the annual report.
5.4	The Annual Operations and Monitoring Report must include a summary of complaints and nuisances and description of remedial action planned and/or taken by the operational certificate holder to prevent similar complaints and nuisances in the future.	Yes	N/A	Refer to section 2.9 the annual report.
5.4	The Annual Operations and Monitoring Report must include a summary of non-compliance notifications and non-compliance reporting and description of remedial action planned and/or taken by the operational certificate holder to prevent similar non-compliance(s) in the future.	Yes	N/A - Refer to sections 2.8 and 3.8 of the annual report.	
5.4	The Annual Operations and Monitoring Report must include an annual status form in accordance with the instructions and template at the ministry website https://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/data-and-report-submissions/annual-status-form	Yes	N/A - Refer to this form.	(Appendix of the annual report).
5.4	The Annual Operations and Monitoring Report must include a summary of OCP and DOCP implementation, and construction of Significant Works, planned for the next calendar year.	Yes	N/A	Refer to Sections 2.3 and 2.4 of the annual report.
5.4	The Environmental Monitoring Plan Report must include site plan(s), sampling locations, storm water flow paths, groundwater elevations, gradients and flow directions.	Yes	N/A	Refer to Figures of the annual report.
5.4	The Environmental Monitoring Plan Report must include data including laboratory analysis and quality assurance and quality control results.	Yes	N/A	Refer to appendix F of the annual report.
5.4	The Environmental Monitoring Plan Report must include data tabulation, trend analysis, graphs, diagrams, and interpretation.	Yes	N/A	Refer to Tables 2 - 6 and appendix F of the annual report.
5.4	The Environmental Monitoring Plan Report must include trigger level assessment plan monitoring, data, results and interpretation.	Yes	N/A - A trigger level assessment plan is not needed for the Original Lined Cell, the New Landfill EMP includes a trigger level response plan.	Refer to Section 2.3 of the annual report.
5.4	The Environmental Monitoring Plan Report must include any determination(s) of the local background concentration of substance(s) in accordance with section 3.5 of this operational certificate.	Yes	N/A - Local determination(s) on local background concentration of substances was not needed.	
5.4	The Environmental Monitoring Plan Report must include comparison of the data with the standards for treated leachate effluent discharge, storm water quality, groundwater quality, and landfill gas management, specified in sections 1.2, 1.4, 1.5, 3.5 and 3.6 of this operational certificate, and identification of any non-compliance and predicted future non-compliance.	Yes	N/A	Refer to Section 2.8, Appendix E, and the Tables 2 - 6 of the annual report.
5.4	The Environmental Monitoring Plan Report must include results, conclusions, recommendations and changes to the environmental monitoring	Yes	N/A - Refer to sections 9 and 10 of the annual report.	Refer to sections 7 and 9 of the annual report.
5.4	The operational certificate holder must upload monitoring data associated with this operational certificate to the Ministry's Environmental Monitoring System (EMS) database, within 45 days of the end of the 3 month period in which the data is collected.	Yes	N/A - Data has been uploaded to the EMS by the laboratory.	

Authorized Person Initial: TS Date: March 28, 2024

Appendix E Borehole Logs

Page 1 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: BH1-16

DATE COMPLETED: January 27, 2016

DRILLING METHOD: Rotosonic FIELD PERSONNEL: S. Foster

DRILLING CONTRACTOR: Drillwell ELEV. SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS **BOREHOLE** m BGS AMSL VALUE NTERVAL NUMBER $\widehat{\mathbb{E}}$ NORTHING: 5541551.19 **GROUND SURFACE** 168.41 REC EASTING: 330846.01 ž SW-GRAVELY SAND, well graded, fine to CUTTINGS RS-1 30.48 medium sand, fine to coarse gravel, brown, BENONITE GRAVEL dry, dense SPT-2 24.38 43 **30.48** 2 RC-2 165.67 SW/GW-SAND AND GRAVEL, well graded, SPT-3 24.38 230.48 45 fine to medium sand, fine gravel, brown, dry, RS-3 very dense - 4 - with coarse sand at 3.05m BGS SPT-4 15.24 85 <u>//</u>30.48 RS-4 - moist at 5.15m BGS 163.23 SP-SAND with gravel, fine sand with trace 30.48 6 162.31 152 mm Ø SPT-5 GB-2 coarse sand and fine gravel, moist, **BOREHOLE** sub-rounded, very dense RS-4 30.48 SW/GW-SAND AND GRAVEL, well graded, fine to coarse sand and gravel, subangular, 8 grey, moist, very dense SPT-6 15.24 41 10 158.05 SP-FINE SAND, trace coarse gravel, grey, moist, dense 157.13 SW-SAND with gravel, fine to medium grained RS-5 30.48 12 CUTTINGS sand and gravel, grey, moist, very dense - cobbles at 12.80m BGS 14 154.39 SW-SAND, with gravel to trace gravel, fine to medium grained sand and gravel, grey, wet, 15.24 - heaving sands at 14.94m BGS 16 150.43 18 RS-7 30.48 SP-SAND, fine to medium grained sand, grey, 20 - 22 4/17/17 **4**30.48 RS-8 BENTONITE 145.25 CORP.GDT BEDROCK, (highly weathered), silty, slight **GRAVEL** 144.94 plasticity, soft, grey, wet 24 144.33 BEDROCK, Karmutsen, porphyritic basalt, igneous extrusive, black (blueish) with white **WELL DETAILS** CRA crystals, phaneritic, moderate iron staining on 146.46 to 144.33m AMSL 26 fractures 21 95 to 24 08m BGS 088877-WI.GPJ vertical fracturing, with iron staining on fracture Material: Bentonite Gravel surface, largely non-intact, RQD=0.25 END OF BOREHOLE @ 24.08m BGS -28 Borehole completed to target depth in bedrock OVERBURDEN LOG No topsoil evident/surface compact sand and MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

STATIC WATER LEVEL Y

Page 2 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: BH1-16 DATE COMPLETED: January 27, 2016

CLIENT: Uplands

DRILLING METHOD: Rotosonic FIELD PERSONNEL: S. Foster

DRILLING CONTRACTOR: Drillwell

LOCATION: Campbell River, British Columbia

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	BOREHOLE			SAMF		
ווו טפט		AMSL		NUMBER	INTERVAL	REC (m)	'N' VALUE	
				N S	INTE	REC		
	gravel Rorehole backfilled with soil cuttings and							
	Borehole backfilled with soil cuttings and sealed with bentonite							
-32	Static water level in boring - 11.21 m BGS measured after 14 hours							
	RS - Rotosonic Core Sample SPT - Standard Penetration Test (splitspoon							
34	sample) GB - Grab Sample							
	0.00000							
36								
38								
40								
-42								
- 44								
46								
40								
-48								
40								
50								
52								
-54								
-56								
-58								
	OTEO. MEACHDING BOILT ELEVATIONS MAY SUMME	DEFED TO CO	DDENT ELEVATION TAR: E					
<u>NC</u>	<u>DTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; STATIC WATER		VVCINI ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: BH2-16

DATE COMPLETED: January 28, 2016

DRILLING METHOD: Rotosonic

CLIENT: Uplands

FIELD PERSONNEL: J. Stewart

DRILLING CONTRACTOR: Drillwell

LOCATION: Campbell River, British Columbia

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	BOREHOLE			SAMP	
	NORTHING: 5541470.19 GROUND SURFACE EASTING: 330839.07	167.86		NUMBER	INTERVAL	REC (m)	'N' VALUE
· 2	SW-GRAVELY SAND, with cobbles, well graded, fine to coarse sand and gravel, brown, moist, dense	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOIL CUTTINGS BENONITE GRAVEL A A A A A A A A A A A A A A A A A A A	SPT-1 RS-1 SPT-2 RS-2		6.10 30.48 6.10 30.48 15.24	48 42 44
4	SW/GW-SAND AND GRAVEL, fine to medium grain sand, dry, compact	164.51	BOREHOLE	RS-3 GB-1 SPT-4		30.48 18.29	21
6 8	SP-SAND, poorly graded, fine sand, brown, dry, very dense	162.68	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	RS-4 SPT-5 RS-5		30.48 15.24 30.48	>66
10	SW/GW-GRAVELY SAND, well graded, grey, moist, dense	159.63		GB-2 SPT-6 RS-6 GB-3		15.24 30.48	37
12	ML-SANDY SILT with gravel, slightly cohesive, low plasticity, fine sand and gravel silt till, grey with brown ribbons, moist, compact	156.28		STP-7 GB-4		15.24	13
14	BEDROCK, highly weathered (saprolite) surface, silt, crumbly, interbedded grey and brown, moist	153.84 153.53	BENTONITE GRAVEL	RS-7		30.48	
16 18	BEDROCK, Karmutsen, porphyritic basalt, igneous extrusive, black (blueish) with white crystals, phaneritic, moderate iron staining on fractures vertical fracturing, with iron staining on fracture	151.40	WELL DETAILS Seal: 156.28 to 151.40m AMSL	GB-5			
10	surface, largely non-intact, RQD=0 END OF BOREHOLE @ 16.46m BGS		11.58 to 16.46m BGS Material: Bentonite Gravel				
20	Borehole completed to target depth in bedrock No topsoil evident/surface compact sand and gravel						
22	Borehole dry upon completion Borehole backfilled with soil cuttings and sealed with bentonite RS - Rotosonic Core Sample						
24	SPT - Standard Penetration Test (splitspoon sample) GB - Grab Sample						
26							
28							

CLIENT: Uplands

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

HOLE DESIGNATION: BH5-15

Page 1 of 1

DATE COMPLETED: August 6, 2015

DRILLING METHOD: Sonic

FIELD PERSONNEL: T. Fitzgerald

LOCATION: Campbell River, British Columbia

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

-2 -4	GW GRAVEL, with sand, well graded gravel, medium to coarse grained sand, 1.52 m of recovery from 0-3.05 m GW GRAVEL, well graded, up to 7.5 cm GW GRAVEL, with sand, well graded gravel up	m BGS	BOREHOLE Bentonite Chips	NUMBER	INTERVAL	REC (m)	'N' VALUE	
4	medium to coarse grained sand, 1.52 m of recovery from 0-3.05 m GW GRAVEL, well graded, up to 7.5 cm						-	
		3.05						
6	to 7.5 cm, medium to coarse grained sand	3.66						
8	SW SAND, with gravel, medium to coarse grained well graded sand, gravel up to 7.5 cm - 0.3 m thick bed of silty sand from 7.01 to 7.32m BGS		Soil Cuttings \(\lambda \) \					
10	GW GRAVEL, with sand, well graded gravel, coarse grained sand	9.14						
	SW SAND, medium grained SW SAND, with gravel, gravel up to 2 cm	11.28						
12	GW GRAVEL, with sand, well graded gravel, coarse grained sand	12.19						
14	SW SAND, medium grained SW SAND, with gravel, gravel up to 2 cm, some cementation but pulverized by coring	13.11 13.41						
16	GW GRAVEL, with sand, gravel up to 10 cm, coarse grained sand	15.24						
18	SW SAND, with gravel, gravel up to 2 cm, some cementation but pulverized by coring GW GRAVEL, with sand, gravel up to 3 cm,	17.37						
20	medium to coarse grained sand							
22	SW SAND, with gravel, medium to coarse grained sand, gravel up to 6 cm	20.42						
24	END OF BOREHOLE @ 24.38m BGS	24.38						
26	Lost 15.24 m of 0.15 m diameter casing down the borehole. Borehole abandoned.							
28								

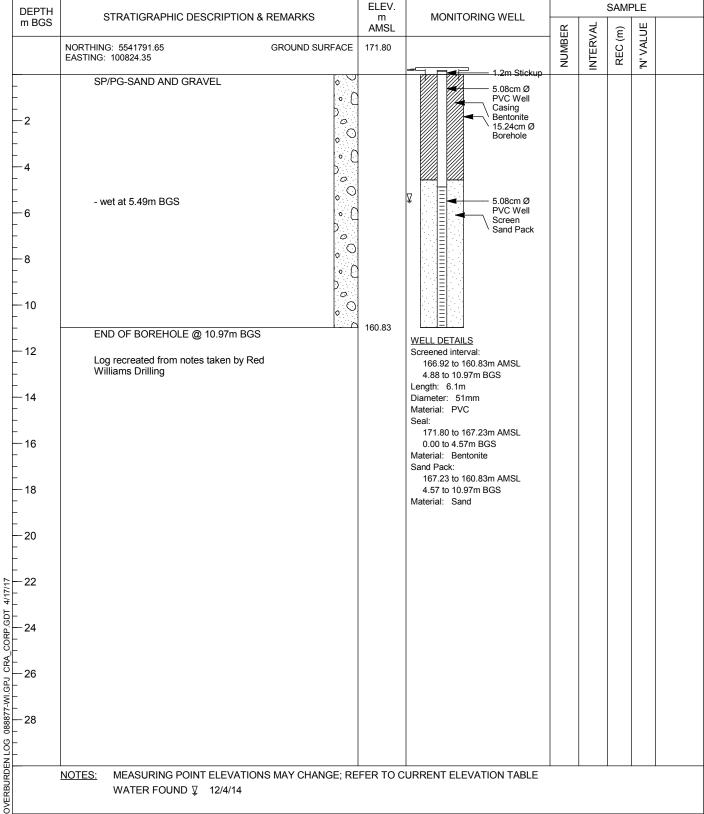
Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

DATE COMPLETED: December 4, 2014

CLIENT: Uplands

DRILLING METHOD: Air Rotary


HOLE DESIGNATION:

LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: Red Williams Drilling Ltd

MW1-14

INSTALLED BY: Red Williams Drilling Ltd DRILLER: T Johnson ELEV. DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS

WATER FOUND

☐ 12/4/14

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW2-14 DATE COMPLETED: December 4, 2014

CLIENT: Uplands

DRILLING METHOD: Air Rotary

LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: Red Williams Drilling Ltd

INSTALLED BY: Red Williams Drilling Ltd DRILLER: T Johnson

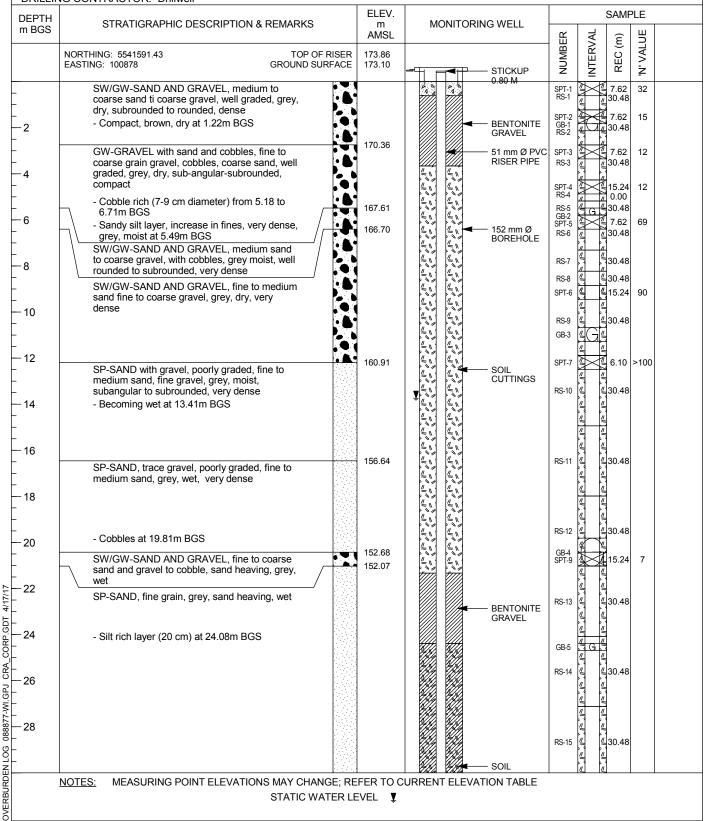
DEPTH m BGS	STRATIGRAPHIC DESCRIPTION	N & REMARKS	ELEV. m	MONITORING WELL			SAM		
	NORTHING: 5541591.19 EASTING: 100877.04	TOP OF RISER GROUND SURFACE	173.85 173.09		NUMBER	INTERVAL	REC (m)	'N' VALUE	
-	SP/GP-SAND AND GRAVEL	GROOND GON AGE	170.00	0.8m Stickup		≥	~	Ž	
		0 (5.08cm Ø PVC Well					
-2) 0		Casing Bentonite					
_				15.24cm Ø Borehole					
4									
0		Y A							
6		0. (166.38						
	BOULDERS		165.77						
8	SP/GP-SAND AND GRAVEL	0							
		0 (
40									
10									
		0. (
12		0							
		0							
		(0. ()		▼					
- 14		O							
		O							
-16		[。 ()							
		0	156.02	5.08cm Ø PVC Well					
10	GP-SANDY GRAVEL, wet	000		Screen Sand Pack					
18		Poo							
		600							
20		200							
		60							
- 22	END OF BOREHOLE @ 21.64m BO	1) -	151.45	WELL DETAILS					
				WELL DETAILS Screened interval:					
	Log recreated from notes taken by F Williams Drilling	Red		157.54 to 151.45m AMSL 15.54 to 21.64m BGS					
24				Length: 6.1m					
				Diameter: 51mm Material: PVC					
26				Seal: 173.09 to 168.52m AMSL					
				0.00 to 4.57m BGS					
				Material: Bentonite Sand Pack:					
-28				168.52 to 151.45m AMSL					
- 22 - 24 - 26 - 28				4.57 to 21.64m BGS Material: Sand					
	NOTES: MEASURING POINT ELEVATI	ONS MAY CHANGE: RE	FER TO C	CURRENT ELEVATION TABLE					

Page 1 of 3

PROJECT NAME: Upland Landfill

PROJECT NUMBER: 088877 CLIENT: Uplands

LOCATION: Campbell River, British Columbia


DATE COMPLETED: January 27, 2016

MW2A-16

DRILLING METHOD: Rotosonic FIELD PERSONNEL: S. Foster

HOLE DESIGNATION:

DRILLING CONTRACTOR: Drillwell

CLIENT: Uplands

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 2 of 3

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW2A-16 DATE COMPLETED: January 27, 2016 DRILLING METHOD: Rotosonic

LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: S. Foster

DRILLING CONTRACTOR: Drillwell

- Wood detritus (carbon) 2 cm at 32.92m BGS - Wood detritus (carbon) 2 cm at 32.92m BGS - Wood detritus (carbon) 2 cm at 32.92m BGS - Wood detritus (carbon) 2 cm at 32.92m BGS - Wood detritus (carbon) 2 cm at 32.92m BGS - R8-16	DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m AMSL	MONITORING WELL	~	ب	SAMF		
- Wood detritus (carbon) 2 cm at 32.92m BGS 34 45 END OF BOREHOLE @ 45.42m BGS Borehole terminated at maximum drilling method depth AB No topsole violent/surface compact sand and gravel Static Groundwater Elevation - 13.74 m BGS after completion of well STATE AND STATE AND Diameter: 5 from Sick State Groundwater Elevation - 13.74 m BGS after completion of well OB - Grab Sample 52 48 END OF BOREHOLE @ 45.42m BGS Beside Groundwater Elevation - 13.74 m BGS after completion of well STATE AND STATE AND STATE AND Diameter: 5 from Sick Size: 0 Material: SCH 40 PVC Seat: 198.22 to 138.05m BGS Material: PS SILICA SAND Seat: 198.22 to 138.05m BGS Material: PS SILICA SAND Seat: 198.22 to 138.05m AMSL 30.80 BG SILICA SAND Seat: 198.22 to 138.05m AMSL 30.80 BG SILICA SAND Seat: 198.24 to 151.76m AMSL 30.80 BG SILICA SAND Seat: 198.44 t			AIVISL		NUMBER	INTERVAL	REC (m)	'N' VALUE	
151.76 to 148.72m AMSL 21.34 to 24.38m BGS Material: BENTONITE CHIPS	34 36 38 40 42 44 46 48	END OF BOREHOLE @ 45.42m BGS Borehole terminated at maximum drilling method depth No topsoil evident/surface compact sand and gravel Static Groundwater Elevation - 13.74 m BGS after completion of well RS - Rotosonic Core Sample SPT - Standard Penetration Test (splitspoon sample)	127.68	BENTONITE PELLETS SILICA SAND 51 mm Ø 10-SLOT PVC SCREEN WELL DETAILS Screened interval: 135.61 to 132.56m AMSL 37.49 to 40.54m BGS Length: 3.05m Diameter: 51mm Slot Size: 10 Material: SCH. 40 PVC Seal: 136.22 to 138.05m AMSL 36.88 to 35.05m BGS Material: Bentonite Pellets Sand Pack: 132.26 to 136.22m AMSL 40.84 to 36.88m BGS Material: #2 SILICA SAND Seal: 169.44 to 151.76m AMSL 3.66 to 21.34m BGS Material: SOIL CUTTINGS Seal: 151.76 to 148.72m AMSL 21.34 to 24.38m BGS	RS-16 RS-17 RS-18 BG-6		30.48	7.1/.	

CLIENT: Uplands

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

HOLE DESIGNATION: MW2A-16

Page 3 of 3

DATE COMPLETED: January 27, 2016

DRILLING METHOD: Rotosonic FIELD PERSONNEL: S. Foster

LOCATION: Campbell River, British Columbia

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

DRILLING CONTRACTOR: Drillwell ELEV. SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS MONITORING WELL m AMSL m BGS 3VAL (m) LUE

			NUMBE	INTERV	REC (r	'N' VAL	<u> </u>
- - - 62 -		148.72 to 138.05m AMSL 24.38 to 35.05m BGS Material: SOIL CUTTINGS					
_ 64 							
_ 66 							
_ 68 							
70 							
_ 72 _							
_ 74 _							
_ 76 							
_ 78 							
_ 80 							
- 82 							
- 84 							
_ 86 							
- 88 							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE STATIC WATER LE	URRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW3-14

DATE COMPLETED: December 4, 2014

CLIENT: Uplands

DRILLING METHOD: Air Rotary

LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: Red Williams Drilling Ltd

DRILLER: T Johnson

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITORING WELL			SAMI	PLE	
m BGS		AMSL 168.59	WONTO WELL	NUMBER	INTERVAL	REC (m)	N' VALUE	
	NORTHING: 5541429.8 TOP OF RISER EASTING: 100853.88 GROUND SURFACE	167.59	0.8m Stickup	N N	INTE	REC	<u>'</u> Z	
- - - - - 2	SP/GP-SAND AND GRAVEL		5.08cm Ø PVC Well Casing Bentonite 15.24cm Ø Borehole					
- -4 - - - - -6	GP-SANDY GRAVEL	163.32						
- - 8 - -	SP/GP-SAND AND GRAVEL							
10 12	GP-SANDY GRAVEL wet	155.09	▼ 5.08cm Ø PVC Well					
_ 14 	0.00		Screen Sand Pack					
16 	GRANITE BECROCK	150.83						
- 18	END OF BOREHOLE @ 18.59m BGS	149.00	WELL DETAILS Screened interval:					
- 20 	Log recreated from notes taken by Red Williams Drilling		156.31 to 150.22m AMSL 11.28 to 17.37m BGS Length: 6.1m Diameter: 51mm Material: PVC					
- 22 - -			Seal: 167.59 to 163.02m AMSL 0.00 to 4.57m BGS Material: Bentonite Sand Pack:					
-24			163.02 to 150.22m AMSL 4.57 to 17.37m BGS Material: Sand					
-26								
- 28 - 28 -								
- - -	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REWATER FOUND ↓ 12/4/14	EFER TO C	CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW4A-15
DATE COMPLETED: August 5, 2015
DRILLING METHOD: Sonic

CLIENT: Uplands
LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: T. Fitzgerald

DRILLING CONTRACTOR: BMD

DRILLER: A. McRea

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMA	RKS	ELEV.	MONITORING WELL		T .	SAMF		
		TOP OF RISER JND SURFACE	169.30 168.54		NUMBER	INTERVAL	REC (m)	'N' VALUE	
-2	GW GRAVEL, with sand, subrounded gravel up to 5.1 cm diameter, medium to coarse grained sand			Concrete Bentonite Chips Lan Lan Lan Lan Lan Lan Lan Lan Lan La				-	
- 6	SW SAND, well graded, medium to coarse grained, moist		162.14	Soil Cuttings L L L L L L L L L L L L L L L L L L					
10	SW SAND, well graded, fine to medium grained, moist, 1.52 m of recovery		159.09						
12	SW SAND, some gravel, well graded sand, medium to coarse grained gravel SP SAND, fine grained		156.35 155.74 155.43						
16	SW SAND, some gravel, medium to coarse grained well graded sand GW GRAVEL, clean, up to 5.1 cm diameter SW SAND, medium to coarse grained, 1.52 m of recovery		153.30 153.00						
18	- wet at 16.15m BGS - some gravel from 17.98 to 18.29m BGS BEDROCK		150.25 149.95	Bentonite					
20	IGNEOUS ROCK, porphyritic, aphanitic, brown; phenocrysts approximately 1-3 mm, reddish brown; no evidence of fractures, rock core broken by vibration of the sonic rig		149.34	Chips 15.2 cm Ø Borehole Sand Pack 5.1 cm Ø Well					
22	IGNEOUS ROCK, fine grained, coarser than above, green; phenocrysts up to 1 cm - horizontal fracture, fine sediment filling at 19.51m BGS		147.20	WELL DETAILS Screened interval: 148.73 to 147.20m AMSL 19.81 to 21.34m BGS		<u> </u>			
24	- vertical and oblique fractures at 19.81m BGS - with secondary mineralization from 20.88 to 21.34m BGS END OF BOREHOLE @ 21.34m BGS			Length: 1.52m Diameter: 51mm Slot Size: 10					
26	3-2-6-11			Material: PVC Seal: 150.56 to 149.03m AMSL 17.98 to 19.51m BGS Material: Bentonite Chips					
28				Sand Pack: 149.03 to 147.20m AMSL 19.51 to 21.34m BGS Material: Sand					

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW4B-15
DATE COMPLETED: August 5, 2015
DRILLING METHOD: Sonic

CLIENT: Uplands
LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: T. Fitzgerald

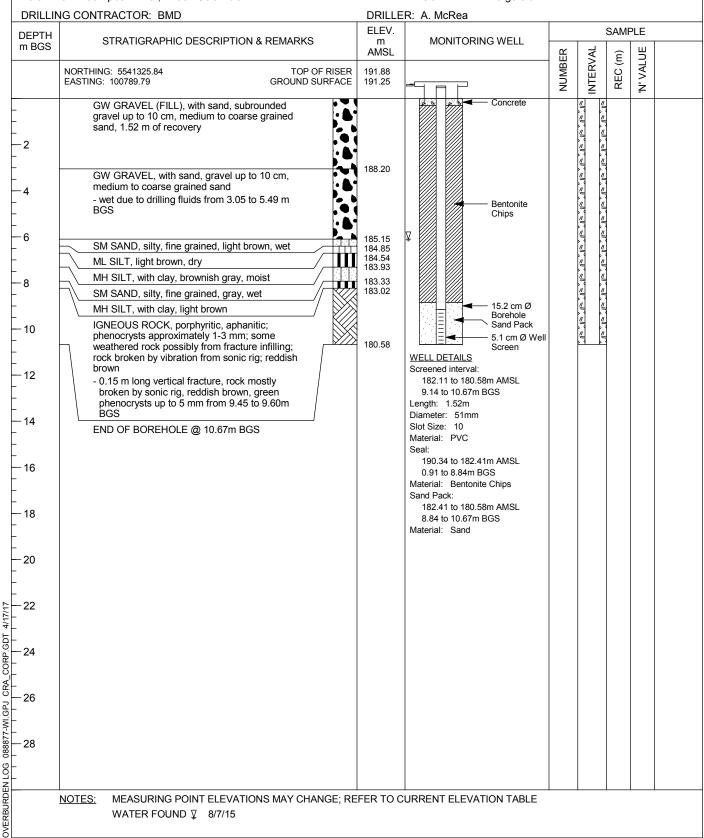
DRILLING CONTRACTOR: BMD DRILLER: A. McRea

DEPTH	STRATIGRAPHIC DESCRI	PTION & REMARKS	ELEV. m	MONITORING WELL			SAMP	
m BGS			AMSL		BER	RVAL	REC (m)	N' VALUE
	NORTHING: 5541575.03 EASTING: 100810.75	TOP OF RISER GROUND SURFACE	169.29 168.42		NUMBER	INTERVAL	REC	<u>`</u> Z
- 2	GW GRAVEL, with sand, subr up to 5.1 cm diameter, mediun grained sand	ounded gravel n to coarse		Concrete Bentonite Chips				
8	SW SAND, well graded, mediugrained, moist	ım to coarse	162.02					
10	SW SAND, well graded, fine to grained, moist, 1.52 m of reco	o medium very	158.97					
12	SW SAND, some gravel, well medium to coarse grained gravel. SP SAND, fine grained	graded sand,	156.23 155.62 155.31					
14	SW SAND, some gravel, medigrained well graded sand GW GRAVEL, clean, up to 5.1	, , , , , , , , , , , , , , , , , , ,	153.18	Bentonite Chips				
16	SW SAND, medium to coarse of recovery - wet at 16.15m BGS		152.88	Tis.2 cm Ø Borehole Sand Pack				
18	- some gravel from 17.98 to 18 - bedrock at 18.29m BGS END OF BOREHOLE @ 18.29		150.13	Screen WELL DETAILS				
20	END OF BOILEHOLE @ 10.20	WII 200		Screened interval: 153.18 to 150.13m AMSL 15.24 to 18.29m BGS Length: 3.05m				
22				Diameter: 51mm Slot Size: 10 Material: PVC Seal: 155.01 to 153.48m AMSL				
24				13.41 to 14.94m BGS Material: Bentonite Chips Sand Pack: 153.48 to 150.13m AMSL				
26				14.94 to 18.29m BGS Material: Sand				
28								
	NOTES: MEASURING POINT ELE WATER FOUND		FER TO C	URRENT ELEVATION TABLE				

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands


LOCATION: Campbell River, British Columbia

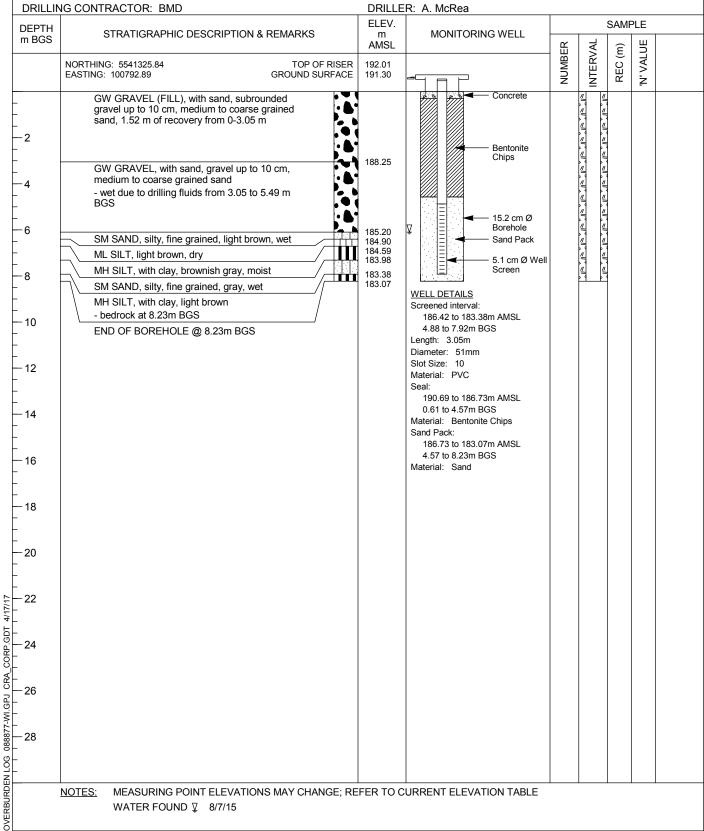
DATE COMPLETED: August 7, 2015

MW5A-15

DRILLING METHOD: Sonic
FIELD PERSONNEL: T. Fitzgerald

HOLE DESIGNATION:

Page 1 of 1


PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands LOCATION: Campbell River, British Columbia

MW5B-15 HOLE DESIGNATION: DATE COMPLETED: August 7, 2015

DRILLING METHOD: Sonic FIELD PERSONNEL: T. Fitzgerald

DRILLER: A. McRea

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW6-17 DATE COMPLETED: March 22, 2017

CLIENT: Uplands

DRILLING METHOD: Sonic LOCATION: Campbell River, British Columbia FIELD PERSONNEL: T. Morton

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. m	MONITORING WELL			SAMF		
	NORTHING: 5541753.1 GROUND SURF	ACE	AMSL 185.50		NUMBER	INTERVAL	REC (m)	N' VALUE	
	EASTING: 330407.1 TOP OF RI	SER	185.38		Š	IN IN	RE	<u>'</u> Z	
	cobble trace silt poorly graded brown moist	000		CONCRETE 51mm PVC WELL	1SS	> <			
	- increase in coarseness at 0.91m BGS			CASING BENTONITE					
	SP-SAND, with gravel, medium to coarse grained, poorly graded, grey, moist	_^_	183.21	\ CHIPS SAND ■ 102mm BOREHOLE	2SS	> <			
			180.77		3SS	>			
	SP-SAND, with silt to silty sand, fine to very fine grained, grey to brown, moist		100.77		4SS	\sim			
	SP-SAND, with silt and gravel, occasional		179.25		500				
	till-like cobble, grey, moist			▼	5SS				
	SP-SAND (FILL), with silt and gravel, occasional cobble, very dense, grey, moist to wet		177.57	BENTONITE	6SS				
0				51mm PVC WELL SCREEN SAND PACK					
2	TILL/BEDROCK, highly weathered, grey		174.22 173.92	SAND FACK	7SS				
_	BEDROCK, granite, pink/red, white inclusions END OF BOREHOLE @ 12.19m BGS		173.31	WELL DETAILS					
4				Screened interval: 175.75 to 174.22m AMSL					
				9.75 to 11.28m BGS Length: 1.52m					
6				Diameter: 51mm Slot Size: 0.020 Material: PVC					
				Seal: 177.27 to 176.35m AMSL					
8				8.23 to 9.14m BGS Material: Bentonite Chips					
				Sand Pack: 176.35 to 173.31m AMSL					
0				9.14 to 12.19m BGS Material: Sand					
2									
4									
6									
8									
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE	E. DE		LIDDENT ELEVATION TADI E		l			

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands
LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW7-17
DATE COMPLETED: March 14, 2017

DRILLING METHOD: Sonic
FIELD PERSONNEL: C. Ragan

DEPTH m BGS	STRATIGRAPHIC DESCRIPTIO	N & REMARKS	ELEV. m	MONITORING WELL			SAM	
III BGS	NORTHING: 5541691.37	TOP OF RISER GROUND SURFACE	187.52		NUMBER	INTERVAL	REC (m)	'N' VALUE
	GP-GRAVEL, with fine to coarse sa		186.86	謝」 TJ線 CONCRETE	₹	Ξ	<u> </u>	Ž
- 2	cobble, trace silt, very dense, well of to moist			51mm PVC WELL CASING BENTONITE 102mm BOREHOLE BENTONITE CHIPS 51mm PVC WELL WELL	1GS			50
	BEDROCK END OF BOREHOLE @ 5.03m BO	as S	181.83	SCREEN SAND PACK	1SS	\times	0.00	59
-6 -8 -10 -12 -14 -16	END OF BONEFICE & COMMISSION			Screened interval: 184.12 to 182.59m AMSL 2.74 to 4.27m BGS Length: 1.52m Diameter: 51mm Slot Size: 0.040 Material: PVC Seal: 185.18 to 184.57m AMSL 1.68 to 2.29m BGS Material: Bentonite Chips Sand Pack: 184.57 to 181.83m AMSL 2.29 to 5.03m BGS Material: Sand				
-20								
- 22								
- 24								
-26								
28								
	NOTES: MEASURING POINT ELEVAT	TIONS MAY CHANGE; RE	FER TO C	L CURRENT ELEVATION TABLE 3/14/17		1		

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

HOLE DESIGNATION: MW8-17
DATE COMPLETED: February 22, 2017

DRILLING METHOD: Hollow Stem Auger/odex

LOCATION: Campbell River, British Columbia FIELD PERSONNEL: T. Morton/R. Rocca

STRATIGRAPHIC DESCRIPTION & REMARKS NORTHING: 5541828.15 TOP OF EASTING: 100750.08 GROUND SUI		m AMSL	MONITORING WELL				
		:		HER	3VAL	(m)	LUE
.AGTING. 100/30.00 GROUND 301		192.51 191.29		NUMBER	INTERVAL	REC (m)	'N' VALUE
SP-SAND (FILL), with gravel, trace silt and organic rootlets, well graded, red/brown	-,01	190.38	CONCRETE				
GP-GRAVEL, with sand, trace silt, trace to some cobble, dense to very dense, well graded, grey/brown, dry to moist	609		BENTONITE CHIPS 51mm PVC	188	\geq	20.42	70
SP-SAND, with gravel, trace to some cobble, trace silt, dense, grey/brown, dry to moist		188.24	CASING 102mm BOREHOLE	2SS	\geq	16.46	44
			NATIVE SOIL	3SS	\geq	12.80	33
- infrequent cobble from 6.10m BGS				4SS	\geq	14.02	41
				5SS	\times	15.24	40
				6SS	\geq	17.68	35
				7SS	\geq	15.24	38
		178.18		8SS	\geq		40
BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet	.00	177.73	BENTONITE PELLETS				
- SS9: refusal at 15.62m BGS	\ O		51mm PVC	988	>	6.10	96+
	000		WELL SCREEN SAND PACK				
SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet		173.15 172.09		1088	\times	21.64	64
GP-GRAVEL, with sand, occasional cobble, compact, poorly graded, grey, wet							
SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet	1000	169.34		11SS	\geq	12.80	21
- trace gravel, dense below 24.38m BGS			HEAVED N N N N N N N N N				
				12SS		30.48	38
END OF BOREHOLE @ 28.96m BGS		162.33	WELL DETAILS				
	BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, dense, grey/brown, dry to moist BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet SS9: refusal at 15.62m BGS - cobble/boulder from 16.76 to 17.07m BGS - red from 17.98 to 18.14m BGS SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet GP-GRAVEL, with sand, occasional cobble, compact, poorly graded, grey, wet SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet Trace gravel, dense below 24.38m BGS END OF BOREHOLE @ 28.96m BGS	BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, dense, poorly graded, brown, wet - infrequent cobble from 6.10m BGS BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet - SS9: refusal at 15.62m BGS - cobble/boulder from 16.76 to 17.07m BGS - red from 17.98 to 18.14m BGS SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet GP-GRAVEL, with sand, occasional cobble, compact, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS END OF BOREHOLE @ 28.96m BGS DTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet SSP-SAND, with gravel, trace to some cobble, trace silt, dense, grey/brown, dry to moist 178.18 177.73 BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet SSP: refusal at 15.62m BGS - cobble/boulder from 16.76 to 17.07m BGS - red from 17.98 to 18.14m BGS SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet GP-GRAVEL, with sand, occasional cobble, compact, poorly graded, grey, wet SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS END OF BOREHOLE @ 28.96m BGS	SP-SAND, with gravel, trace to some cobble, trace silt, dense, grey/brown, dry to moist BOULDER - infrequent cobble from 6.10m BGS BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet - SS9: refusal at 15.62m BGS - red from 17.98 to 18.14m BGS SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet GP-GRAVEL, with sand, occasional cobble, compact, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS END OF BOREHOLE 28.96m BGS TES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE	Some cobole, greybrown, dry to moist SP-SAND, with gravel, trace to some cobble, trace silt, dense, greybrown, dry to moist SP-SAND, with gravel, trace to some cobble, trace silt, dense, greybrown, dry to moist BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet - SS9: refusal at 15.62m BGS - red from 17.98 to 18.14m BGS SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS ITA. 15 SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS IES. MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE	SP-SAND, with gravel, trace to some cobble, trace silt, dense, grey/brown, dry to moist BOULDER - infrequent cobble from 6.10m BGS BOULDER GP-GRAVEL, with sand, frequent cobble, trace silt, very dense, poorly graded, brown, wet - SS9: refusal at 15.62m BGS - cobble/boulder from 16.76 to 17.07m BGS - red from 17.98 to 18.14m BGS SP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet GP-GRAVEL, with sand, occasional cobble, compact, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS TES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE TISS: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE	SP-SAND, with gravel, trace to some cobble, trace silt, very dense, poorly graded, brown, wet - SSP-SAND, with gravel, trace to some cobble, trace silt, very dense, poorly graded, brown, wet - SSP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet GP-GRAVEL, with sand, cossional cobble, compact, poorly graded, grey, wet - SSP-SAND, with gravel, very dense, medium to fine grained, poorly graded, grey, wet - trace gravel, dense below 24.38m BGS TES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE TISSES MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE TISSES MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

Page 2 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

LOCATION: Campbell River, British Columbia

CLIENT: Uplands

HOLE DESIGNATION: MW8-17

DATE COMPLETED: February 22, 2017 DRILLING METHOD: Hollow Stem Auger/odex

FIELD PERSONNEL: T. Morton/R. Rocca

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITORING WELL			SAM	PLE	
n BGS		AMSL		NUMBER	INTERVAL	REC (m)	'N' VALUE	
32			Screened interval: 175.50 to 172.45m AMSL 15.79 to 18.84m BGS Length: 3.05m Diameter: 51mm Slot Size: 0.040 Material: PVC Seal:					
36			179.10 to 176.05m AMSL 12.19 to 15.24m BGS Material: Bentonite Pellets Sand Pack: 176.05 to 172.45m AMSL 15.24 to 18.84m BGS					
38			Material: Sand					
40								
42								
14								
46								
48								
50								
52								
52 54 56 58								
56								
58								

Page 1 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands
LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW9-17
DATE COMPLETED: March 14, 2017

DRILLING METHOD: Sonic FIELD PERSONNEL: C. Ragan

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITORING WELL			SAMF	
m BGS	NORTHING: 5541911.68 TOP OF RISER	AMSL 191.65		NUMBER	NTERVAL	REC (m)	N' VALUE
	EASTING: 100811.04 GROUND SURFACE	190.85) N	INTE	RE	<u>z</u>
	SP-SAND (FILL), with gravel, trace silt and organic rootlets, well graded, red/brown, dry to	189.94	51mm PVC				
_	moist	100.04	WELL CASING BENTONITE				
2	GW-GRAVEL, with sand, with cobble, trace silt, dense to very dense, brown, dry		CHIPS/CUTTIN				
	- 0.13m diameter boulder at 1.52m BGS		BOREHOLE	1SS	\geq	30.48	58
4							
	SP-SAND, with gravel, trace cobble, trace silt, dense to very dense, fine to coarse grained,	185.97					
-6	brown, dry to moist			288	\sim	9.14	51
	- increase in gravel and cobble content at	183.23					
8	7.32m BGS GP-GRAVEL, with cobble, with medium to	182.62		3GS	\geq		
	coarse sand, with silt, brown, moist			4SS	\geq	0.00	43
- 10	silt, dense, fine to coarse sand, fine to coarse	181.10		5GS	\geq		
	subrounded gravel, brown, moist SP-SAND, with medium gravel, some cobble,						
12	trace silt, very dense, coarse grained, moist			6SS	\searrow	9.14	85
- 14	GW-GRAVEL, with cobble, with medium to	177.13 176.52					
	coarse sand, very dense, fine to medium grained, dark grey, moist	170.02		788		7.62	40
-16	SP-SAND, with fine to medium gravel, some cobble, trace silt, dense, medium to coarse	175.00					.
	grained, brown, moist SM-SILTY SAND, with gravel, dense, fine	174.39					
· 18	grained, light grey, dry			9GS	\boxtimes	 	0.5
	SW/GW-SAND/GRAVEL, with cobble, with silt, dense, fine to coarse sand, fine to coarse gravel, brown, moist	171.34		888		9.14	95
20	SM-SILTY SAND, with gravel, very dense, fine grained, poorly graded, light grey, dry to moist						
	SW/GW-SAND/GRAVEL, with cobble, with silt,	170.12		10GS 11SS	\bowtie	9.14	126
- 22	very dense, fine to coarse sad, fine to coarse gravel, brown, moist						
-24				12GS 13SS	\bowtie	3.05	62
	GW-GRAVEL, with fine to medium sand, some	166.16	1	1300		3.05	02
-26	cobble, trace silt, very dense, fine to coarse grained, subrounded, brown/dark grey, wet						
				14GS	\geq		
- 28	GP/SP-SAND/GRAVEL, some coble, trace silt,	163.11		15SS	\geq	3.05	21
==	dense, medium to coarse sand, fine to medium subrounded gravel, clean, brown, wet		BENTONITE CHIPS				
	- increase in cobble up to > 7cm, heaving		JAMA VANA OTTILI S	16GS	\geq		

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 2 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

HOLE DESIGNATION: MW9-17
DATE COMPLETED: March 14, 2017

CLIENT: Uplands

DRILLING METHOD: Sonic FIELD PERSONNEL: C. Ragan

LOCATION: Campbell River, British Columbia

ELEV. SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS MONITORING WELL m BGS **AMSL** NTERVAL 'N' VALUE NUMBER (E) REC (formation approx. 1.22m into casing at 29.57m BGS 17SS 7.62 30 \bigcirc 000 51mm PVC 32 18GS SCREEN SAND PACK 157.93 SM-SILTY SAND, trace gravel, dense, fine to 157.32 medium grained, light brown/grey, wet 34 **WELL DETAILS** END OF BOREHOLE @ 33.53m BGS Screened interval: 160.37 to 157.32m AMSL 30.48 to 33.53m BGS - 36 Length: 3.05m Diameter: 51mm Slot Size: 0.040 Material: PVC - 38 Seal: 161.59 to 160.37m AMSL 29.26 to 30.48m BGS Material: Bentonite Pellets -40 Sand Pack: 161.59 to 157.32m AMSL 29.26 to 33.53m BGS Material: Sand -42 -44 46 -48 - 50 4/17/17 - 52 088877-WI.GPJ CRA_CORP.GDT 54 - 56 - 58 OVERBURDEN LOG MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL ▼ 3/14/17

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877 CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW10-17

DATE COMPLETED: March 27, 2017

DRILLING METHOD: Sonic/air Rotary

FIELD PERSONNEL: T. Morton/C. Ragan

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITORING WELL			SAMF	
DGO	NORTHING: 5541441.67 TOP OF RIS			NUMBER	INTERVAL	REC (m)	N' VALUE
	EASTING: 331208.63 GROUND SURF.		CONCRETE	₹	¥	RE	ž
	organics (rootlets), poorly graded, red/brown GP/SP-GRAVEL/SAND, with sand to with	187.02	51mm PVC WELL CASING	1GS	>		
-2	gravel, trace silt, occasional cobble, poorly	185.19	BENTONITE GROUT				
4	GP-GRAVEL, with sand, trace silt, occasional cobble, poorly graded, grey, dry GP-GRAVEL/COBBLE	185.19 184.73	GRAVEL/CUT 102mm BOREHOLE	TINGS 2GS	>		
	SP-SAND, trace gravel, medium to coarse grained, poorly graded, grey, moist to wet	183.36					
-6	GW/SW-SAND/GRAVEL, with cobble, trace silt, fine to medium gravel, medium to coarse sand, very dense, brown, moist			3SS	\times	5.18	34
8							
10							
40	GW-GRAVEL, with fine to medium sand, with silt, with cobble up to 10cm, fine to coarse gravel, very dense, brown, moist	177.57		4GS			
12	graver, very derise, brown, moist			400			
14	GW/SW-SAND/GRAVEL, with cobble, some silt, fine to coarse gravel, fine to coarse sand,	174.52					
40	very dense, brown, moist	172.39					
16	SM-SILTY SAND, with gravel, trace cobble, very dense, fine grained, dark grey	171.48		5GS	\geq		
18	SP-SAND, trace silt, trace gravel, dense, medium grained, clean, brown, moist						
	- with fine gravel at 18.90m BGS						
20		467.04					
- 22	silt, fine to coarse gravel, medium sand, brown,	167.21		6GS	\geq		
24	SP-SAND, with fine to medium gravel, trace cobble, trace silt, very dense, medium grained, brown, moist	165.08		700		15.04	101
26				7SS		15.24	101
	- increase in silt content, trace gravel, fine to						
-28	medium grained at 27.13m BGS						
		(14년) 사용점		8GS	\searrow		

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 2 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW10-17 DATE COMPLETED: March 27, 2017

DRILLING METHOD: Sonic/air Rotary
FIELD PERSONNEL: T. Morton/C. Ragan

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITORING WELL			SAM	
m BGS		AMSL		NUMBER	INTERVAL	REC (m)	'N' VALUE
32		154.71		9SS		15.24	87
34	SM-SILTY SAND, very dense, fine grained, some medium grained, dark grey/brown, moist			10GS	× ×		120
- 38		148.62					
40	SP-SAND, with silt, trace gravel, medium fine to fine grained, moist to wet		BENTONITE PELLETS				
42			51mm PVC				
46			51mm PVC WELL SCREEN SAND PACK SAND PACK SLOUGH				
48	END OF BOREHOLE @ 47.85m BGS	140.39	WELL DETAILS Screened interval: 145.05 to 142.00m AMSL				
50			43.19 to 46.24m BGS Length: 3.05m Diameter: 51mm Slot Size: 0.020 Material: PVC				
52			Seal: 147.70 to 146.18m AMSL 40.54 to 42.06m BGS Material: Bentonite Pellets Sand Pack: 146.18 to 142.00m AMSL				
- 56			42.06 to 46.24m BGS Material: Sand				
- 58							
NC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; F WATER FOUND 3/23/17 STATIC WATER						

Page 1 of 2

PROJECT NAME: Upland
PROJECT NUMBER: 088877

HOLE DESIGNATION: BH13-18
DATE COMPLETED: 16 July 2018

CLIENT: Upland Contracting

LOCATION: Campbell River, British Columbia

DRILLING METHOD: Geoprobe HQ casing advancing the wet coring.

FIELD PERSONNEL: M. Dyck/B. Kempel

DRILLING CONTRACTOR: Drillwell

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		1	SAMF	LE
200	GROUND SURFACE	AMSL 191.23	NUMBER	INTERVAL	REC (%)	
	SW/GW - SAND and GRAVEL, with cobbles, occassional boulders, medium to coarse grained sand and gravel, grey/brown.			_		
	coarse grained sand and gravel, grey/brown.					
0.5	Drill unable to advance any further than 14.94 m bgs.					
1.0						
1.5						
2.0	ို လို ပို					
2.5						
3.0						
3.5						
	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
4.0						
4.5						
- 5.0						
- 5.5	ο Co + τ 					
-6.0						
	့် ရှိုင်း ()					
-6.5	ڰ * هـ هُوْ					
	ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن					
7.0	້າວ້າວ້າວ ໝ່າງໄດ້					
7.5						
-						
- 8.0	\[\text{\text{0}} \cdot \text{0} \]					
3.0	ا م آه آها ا م آها					
- 8.5						
- 9.0						
3.0						
- 9.5						
3.5						
	وَ وَهُمْ اللَّهِ مِنْ اللَّهِ مِنْ اللَّهِ مِنْ اللَّهِ مِنْ اللَّهِ مِنْ اللَّهِ مِنْ اللَّهِ مِن				1 1	

Page 2 of 2

PROJECT NAME: Upland
PROJECT NUMBER: 088877

HOLE DESIGNATION: BH13-18
DATE COMPLETED: 16 July 2018

CLIENT: Upland Contracting

LOCATION: Campbell River, British Columbia

DRILLING METHOD: Geoprobe HQ casing advancing the wet coring.

FIELD PERSONNEL: M. Dyck/B. Kempel

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		SAMPLE					
111111111111111111111111111111111111111		m AMSL	NUMBER	INTERVAL	REC (%)			
	ا پرين			=				
10.5								
11.0								
- 11.5	ያ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡							
- 12.0								
- 12.5								
	(%) • 6 • 6 • 6 • 6							
- 13.0								
- 13.5								
- 14.0								
- 14.5								
45.0) မို္င္ငံ (ထို-င္	176.29						
- 15.0	END OF BOREHOLE @ 14.94m BGS							
- 15.5								
- 16.0								
10.0								
16.5								
- 17.0								
17.0								
- 17.5								
- 18.0								
- 18.5								
- 19.0								
19.5								
	IOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA							

Page 1 of 2

PROJECT NAME: Upland
PROJECT NUMBER: 088877
CLIENT: Upland Contracting

DATE COMPLETED: 16 July 2018

DRILLING METHOD: Geoprobe Solid Stem
FIELD PERSONNEL: M. Dyck/B. Kempel

HOLE DESIGNATION:

BH14-18

LOCATION: Campbell River, British Columbia

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARK	KS	m AMSL	SAMPLE			
	GROUND SURFACE	191.68	NUMBER	INTERVAL	REC (%)		
	FILL - SAND and GRAVEL, some wood pieces, fill	0:0					
0.5	No bedrock down to 10.67 m bgs.	0:0					
0.5	No bedrock down to 10.07 m bgs.	0.0					
4.0		0.0					
1.0		0:0					
4.5		0.0					
1.5		0 0					
20		0:0					
-2.0		0.0					
- 2.5		0					
- 2.5		0:0					
- 2 0		0:0					
- 3.0		.00					
2.5		0:0					
3.5		0.0					
4.0		0.0					
4.0		0.0					
4.5		0:0					
4.5		0.0					
- 5.0		0.0					
3.0		0:0					
- 5.5		0.0					
5.5		0.0					
-6.0		0:0					
0.0		0 0					
6.5		0.0					
0.5		0:0					
7.0		0.0					
7.0		0.0					
7.5		0:0:					
7.5		0 0					
- 8.0							
0.0		0.0					
- 8.5		0:0:0					
0.0		0					
- 9.0		0.0					
5.0		0:0					
- 9.5		0:0:0					
5.5							
		0.0					

Page 2 of 2

PROJECT NAME: Upland
PROJECT NUMBER: 088877
CLIENT: Upland Contracting

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: BH14-18
DATE COMPLETED: 16 July 2018

DRILLING METHOD: Geoprobe Solid Stem FIELD PERSONNEL: M. Dyck/B. Kempel

DRILLING CONTRACTOR: Drillwell

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m			SAMF	PLE	
111111111111111111111111111111111111111		AMSL	NUMBER	INTERVAL	REC (%)		
	0.0						
- 10.5							
	END OF BOREHOLE @ 10.67m BGS	181.01					
- 11.0							
-115							
- 11.5							
- 12.0							
- 12.5							
- 13.0							
10.0							
13.5							
110							
- 14.0							
- 14.5							
- 15.0							
- 15.5							
- 16.0							
40.5							
- 16.5							
- 17.0							
- 17.5							
- 17.5 - 18.0 - 18.5 - 19.0							
10.0							
- 18.5							
10.0							
79.0							
- 19.5							
l NO	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	ABLE					-
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	ABLE					

Page 1 of 2

PROJECT NAME: Upland

PROJECT NUMBER: 088877

CLIENT: Upland Contracting LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW15A-18

DATE COMPLETED: 18 July 2018

DRILLING METHOD: HW Casing, HQ Coring FIELD PERSONNEL: M. Dyck/B. Kempel

DRILLING CONTRACTOR: Drillwell ELEV. SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS MONITORING WELL m AMSL m BGS NTERVAL NUMBER %) TOP OF RISER 183.07 182.41 REC (占 **GROUND SURFACE** SW/SP - Sand with gravel, medium to coarse CONCRETE grain sand, brown/grey 0.5 1.0 - 1.5 2.0 - 2.5 3.0 3.5 4.0 4.5 - 5.0 - 5.5 6.0 6.5 BENTONITE CHIPS - 7.0 0.8 dHD Corp 26/9/18 END OF OVERBURDEN HOLE @ 9.14m BGS - 9.5 OVERBURDEN LOG NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

STATIC WATER LEVEL ▼

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: Upland

PROJECT NUMBER: 088877

CLIENT: Upland Contracting

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION:

DRILLING METHOD: HW Casing, HQ Coring

MW15A-18

FIELD PERSONNEL: M. Dyck/B. Kempel

DATE COMPLETED: 18 July 2018

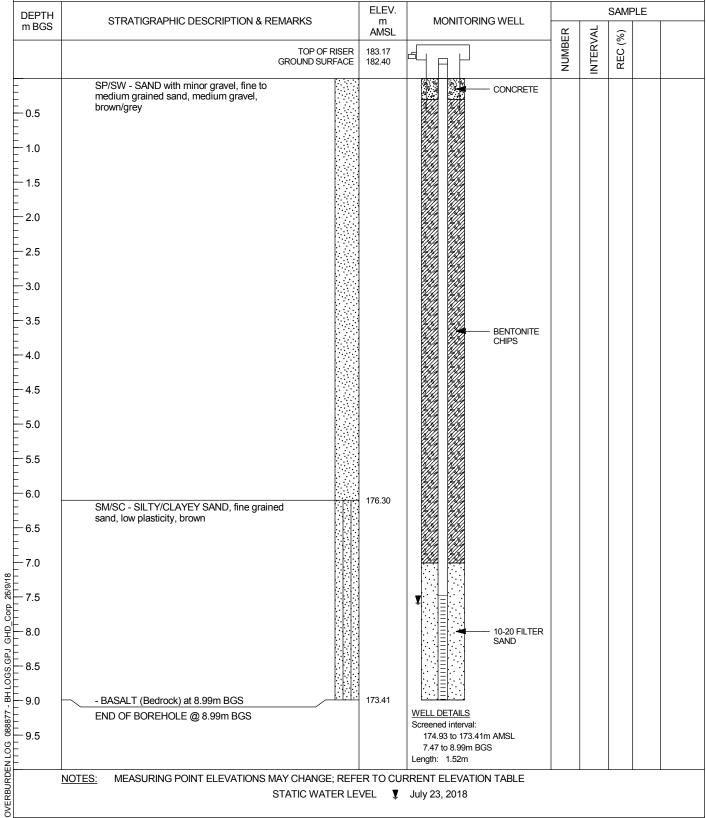
DRILLING CONTRACTOR: Drillwell

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m AMSL	MONITORING WELL	RUN NUMBER	CORE RECOVERY %	RQD %	
- 9.0 - 9.5 - 10.0 - 10.5 - 11.0	BEDROCK - Basalt (Karmusten Formation), grey, porphyritic, no apparent primary porosity, obvious weathering on fractured surface in upper 1.2 metres Weathered sub-vertical fractures. Light brown precipitate on fracture surfaces from 9.15 to 9.30m BGS - Weathered horizontal fracture. Light brown precipitate on fracture surfaces. at 9.27m BGS - Weathered sub-vertical fractures.	173.27	BENTONITE CHIPS	1	100%	RQ	
- 11.5 - 12.0 - 12.5 - 13.0	Light brown precipitate on fracture surfaces from 9.35-9.5m and from 9.55-10.29m BGS from 9.35 to 9.50m BGS - Weathered horizontal fracture. Light brown precipitate on fracture surfaces at 9.6, 9.63 and 10.24m BGS at 9.60m BGS - Some infilled, consolidated fractures/seams below 10.67 m bgs at 10.67m BGS - Subhorizontal fracture with little weathering at 10.79m BGS - Subvertical fracture.			3	>100% >100% (1.60 m)		
- 13.5 - 14.0 - 14.5 - 15.0	Precipitate and infilling on fractures. from 12.37 to 12.70m BGS - Horizontal fractures at 12.83 and 12.9m BGS at 12.83m BGS - Horizontal fracture. Precipitate and some infilling/weathering on fractured surface at 13.23, 13.26, 13.28 and 13.31m BGS at 13.23m BGS - Subvertical fracture. Precipitate and infilling on fractures from 13.41-13.72m and from 14.35 to 14.4m BGS from 13.41 to 13.72m BGS	167.17	10-20 FILTER SAND	4	>100% (1.57 m)		
- 15.5 - 16.0 - 16.5 - 17.0 - 17.5 - 18.0	- Subvertical fracture at 14.63m and from 15.11-15.24m BGS at 14.63m BGS END OF BOREHOLE @ 15.24m BGS		WELL DETAILS Screened interval: 168.69 to 167.17m AMSL 13.72 to 15.24m BGS Length: 1.52m Diameter: 51mm Material: PVC Schedule 40 Seal: 182.11 to 169.00m AMSL 0.30 to 13.41m BGS Material: Bentonite Chips Sand Pack: 169.00 to 167.17m AMSL 13.41 to 15.24m BGS Material: Sand 10-20				
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI STATIC WATER		RRENT ELEVATION TABLE				

Page 1 of 2

PROJECT NAME: Upland

HOLE DESIGNATION: MW15B-18


PROJECT NUMBER: 088877
CLIENT: Upland Contracting

DATE COMPLETED: 23 July 2018 DRILLING METHOD: Air Rotary

LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: M. Dyck

DRILLING CONTRACTOR: Drillwell DRILLER: Scott Burrows

Page 2 of 2

PROJECT NAME: Upland

HOLE DESIGNATION: MW15B-18

PROJECT NUMBER: 088877
CLIENT: Upland Contracting

DATE COMPLETED: 23 July 2018 DRILLING METHOD: Air Rotary

LOCATION: Campbell River, British Columbia

FIELD PERSONNEL: M. Dyck

DEPTH	STRATICRARUIC DESCRIPTION & REMARKS	TRATIGRAPHIC DESCRIPTION & REMARKS ELEV. m MONITORING WELL				SAMPLE			
m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	M AMSL	MONITORING WELL	NUMBER	INTERVAL	REC (%)			
				N N	IN	R			
			Diameter: 51mm Material: PVC Schedule 40						
10.5			Seal: 182.10 to 175.39m AMSL						
11.0			0.30 to 7.01m BGS						
11.0			Material: Bentonite Chips Sand Pack: 175.39 to 173.41m AMSL						
11.5			7.01 to 8.99m BGS Material: Sand 10-20						
12.0			Waterial. Sand 10-20						
12.0									
12.5									
13.0									
13.5									
14.0									
14.5									
15.0									
15.5									
10.0									
16.0									
16.5									
17.0									
17.5									
10.0									
18.0									
18.5									
19.0									
19.5									
<u>NOT</u>	<u>ES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; F STATIC WATER		RRENT ELEVATION TABLE July 23, 2018						

Page 1 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW11-19
DATE COMPLETED: 9 April 2019

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: N. Turl/R.M. Rocca

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV m	. MONITORING WELL			SAMF	?LE
m BGS	NORTHING: 5541315.22 TOP OF RISI EASTING: 331194.55 GROUND SURFA	AMSI ER 194.78		NUMBER	INTERVAL	REC (m)	
- 2	woodchips, dark brown/black, moist	190.91	CONCRETE BENTONITE CHIPS 51mm PVC WELL CASING 152mm BOREHOLE	1AR			
-4	GW-GRAVEL, trace topsoil, fine to coarse grained, angular, dark brown/black, moist	190.91	MATIVE SOIL CUTTINGS	2AR			
- 6 - 8	SW-SAND, with fine angular gravel, well graded	187.86		3AR		_	
- 10	- increase in sand content, angular at 9.14m BGS			4AR		-	
- - 12	- increase in gravel content, coarse, angular at 12.19m BGS			FAD			
- 14 - 16				5AR 15.24m -001		_	
- 18	GP/SP-GRAVEL/SAND, fine gravel, coarse sand	175.67		6AR			
- 20	P _C	T.1		7AR			
- 22 - 24	(o,	∴.ч		8AR			
- 26	GP-GRAVEL, fine grained, angular and round			9AR			
- 28) 	000		10AR			
- 30	6	01		30.48m -002			
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R CHEMICAL ANALYSIS						

Page 2 of 2

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: MW11-19
DATE COMPLETED: 9 April 2019

DRILLING METHOD: Air Rotary
FIELD PERSONNEL: N. Turl/R.M. Rocca

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m AMSL	MONITORING WELL	NUMBER	INTERVAL	REC (m)	LE
	þ			Z 11AR	Ξ	₩.	
34	SP-SAND, fine to medium grained	160.43					
00	GW-GRAVEL, fine grained, well sorted	158.90		12AR			
36	SP-SAND, fine grained, poorly graded	157.38					
- 38				13AR			
40		Ä Ä					
42				14AR			
44				15AR			
46		i G		45.72m -003			
48			BENTONITE	16AR			
50			PELLETS	17AR		_	
- 52			51mm PVC WELL SCREEN SAND PACK	ITAR			
54			SAND PACK WELL DETAILS	18AR			
-	END OF BOREHOLE @ 54.86m BGS	139.09	Screened interval: 143.51 to 140.46m AMSL			-	
56			50.44 to 53.49m BGS Length: 3.05m Diameter: 51mm				
- 58			Slot Size: 0.010 Material: SCH. 40 PVC Seal: 147.17 to 144.12m AMSL				
- 60			46.79 to 49.83m BGS Material: BENTONITE PELLETS Sand Pack: 147.17 to 140.46m AMSL				
62			46.79 to 53.49m BGS Material: 10/20 FILTER SAND				
NC.	OTES: MEASURING POINT ELEVATIONS MAY CHANGF: RF	FER TO CU	RRENT ELEVATION TABLE				
<u>NC</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO CU	RRENT ELEVATION TABLE				

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: PZ1-19
DATE COMPLETED: 10 April 2019
DRILLING METHOD: Air Rotary

FIELD PERSONNEL: N. Turl/R.M. Rocca

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	PIEZOMETER		SAMPLE		LE
200	NORTHING: 5541391.35 TOP OF RISEF EASTING: 297 GROUND SURFACE			NUMBER	INTERVAL	REC (m)	
2	GW-GRAVEL, with fine to coarse sand, fine to medium grained, well graded, grey		SAND/NATIVE SOIL CUTTINGS BENTONITE PELLETS	1AR	_		
4	- increase in sand content at 3.05m BGS		NATIVE SOIL CUTTINGS L A A A A A A A A A A A A A A A A A A	2AR		-	
8	SW-SAND, with fine gravel, fine to coarse grained, well graded, brown/grey	185.16		3AR			
10	- increase in gravel content from 9.14 to 12.19m BGS	•		4AR		_	
12		0		5AR		-	
16	GW-GRAVEL, with coarse sand, fine grained, well graded, brown/grey	174.49	BENTONITE PELLETS	6AR			
18	SW-SAND, with fine to coarse gravel, fine to coarse grained, well graded, brown/grey	172.96	51mm PVC WELL	7AR		_	
20	GM-SILTY GRAVEL, with sand, well graded, brown BEDROCK, brown/grey	171.44 171.13 170.83	SCREEN SAND PACK BENTONITE PELLETS Screened interval:			-	
22	END OF BOREHOLE @ 20.42m BGS		172.81 to 171.29m AMSL 18.44 to 19.96m BGS Length: 1.52m Diameter: 51mm				
24			Slot Size: 0.010 Material: SCH. 40 PVC Seal: 174.94 to 173.42m AMSL				
26 28			16.31 to 17.83m BGS Material: BENTONITE PELLETS Sand Pack: 173.42 to 171.29m AMSL 17.83 to 19.96m BGS				
			Material: 10/20 FILTER SAND				

Page 1 of 1

PROJECT NAME: Upland Landfill PROJECT NUMBER: 088877

CLIENT: Uplands

LOCATION: Campbell River, British Columbia

HOLE DESIGNATION: BH16-19
DATE COMPLETED: 10 April 2019
DRILLING METHOD: Air Rotary

FIELD PERSONNEL: N. Turl/R.M. Rocca

EPTH n BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	BOREHOLE			SAMF	LE
IIBGS	NORTHING: 5541534.43 GROUND SURFACE EASTING: 330733.84	171.93		NUMBER	INTERVAL	REC (m)	
2 4 6 10 12 14 16 18 20 22 24 26	SW-GRAVELLY SAND, fine to coarse angular to subangular gravel, fine to coarse grained, well graded, brown GC-CLAYEY GRAVEL, with fine to coarse sand, fine to coarse grained, low to medium plasticity, grey SW-GRAVELLY SAND, fine to coarse angular to subangular gravel, fine to coarse grained, well graded, brown BEDROCK, brown/grey, iron staining END OF BOREHOLE @ 6.25m BGS	169.80 168.89 166.14 165.69	NATIVE SOIL CUTTINGS BENTONITE CHIPS NATIVE SOIL CUTTINGS BENTONITE CHIPS	1AR 2AR 3AR	EZ.	<u> </u>	

Appendix F

2023 Environmental Monitoring Program Specification

Environmental Monitoring Program Specification - 2023

PROJECT: New Landfill EMP

CLIENT: Northwin Environmental

PROJECT NO.: 11222680.15

PROJECT MANAGER: Rose Marie Rocca

MONITORING STAFF: RESPONSIBILITY

Kathleen Hasler Field Lead
Carny Wong Field Technician
Stephanie Berton Project Chemist
Tristan Habdas Database Analyst

LABORATORIES USED: ALS Environmental, Burnaby, British Columbia

AUTHORIZATION: MONITORING EVENT(S) PC/PM SIGNATURE

Mar/Apr, Jun, Aug/Sep, Nov

Revision #	Date	Revision	GHD
1	January 2022	Specification was developed based on the DOCP, dated July 8, 2021	RMR
2	April 2022	Typo in 2022 EMP Spec was corrected, from MW12-17 to MW11-19.	RMR
3	August 2022	MW3-14 was added to the groundwater monitoring program as a downgradient compliance well, to be sampled semi-annually in 2022. This well was sampled in June 2022, as part of the original EMP, the analytical results will be for the New Landfill EMP as well. In 2023, this well will be sampled quarterly.	RMR
4	August 2022	MW12-22 was added to the groundwater monitoring specification as a downgradient compliance well following its installation, to be sampled quarterly.	RMR
		Renamed LS1 to LDMP-1 and renamed LS2 to LDMP-2. Added LDS, LDMP-3 and LDMP-4. These changes were made to the leak detection monitoring program to account for as built conditions.	
		Added phenols to the leachate analytical parameter list, to be analyzed annually due to presence of wood waste.	
5	September 2022	Updated QAQC Samples. Added LW-PFAS to field blank's analytical list in Q4.	KH

Revision #	Date	Revision	GHD
6	March 2023	Added semi-annual water level monitoring to the full groundwater well network.	RMR
		Removed East and West surface water ditch from the EMP until final cover is placed on the New Landfill.	
		Added Cell 1 West leachate sump to the quarterly leachate monitoring program. Samples will be collected following the discharge of waste to the cell.	
7	May 2023	Perfluorinated compounds has been discontinued from the leachate analytical list since standards only apply to sites set out in Schedule 2 as item A4, C3, E10 or G1.	RMR
		For monitoring location TLIP, the sampler has been changed from GHD to Upland to reflect current field practices.	

Monitoring Schedule: Table 1
Groundwater Analytical Parameters: Table 2
Surface Water Analytical Parameters: Table 3
Leachate Analytical Parameters Table 4
Notes Page 7

Note for Staff – Labelling error on casing:

LFG1-22 labelled as "SVP1-22" on casing. LFG2-22 labelled as "SVP2-22" on casing.

Table 1 Page 1 of 5

Environmental Monitoring Program Specification - 2023 Monitoring Schedule

New Landfill

	Nev	/ Landfill			1	1	1
Monitoring Location	Purpose	Sample Matrix	Quarterly Hydraulic	March/ April	June	August/ September	November
Groundwater Moni	toring (19 WL Locations, 12 Sampling Locations)		Monitoring		l		
Upgradient Monito	ring Wells (5 Locations)				I	I	ı
MW6-17	To monitor upgradient groundwater quality.	WG	Q	√	√	√	√
MW9-17	To monitor upgradient groundwater quality.	WG	Q	$\sqrt{}$	√	V	V
MW1-14	To monitor upgradient groundwater quality.	WG	Q	V	V	V	V
MW4A-15	To monitor upgradient groundwater quality.	WG	Q	V	V	V	√
MW4B-15	To monitor upgradient groundwater quality.	WG	Q	\checkmark	√	V	V
Cross-Gradient Mo	nitoring Wells (2 Locations)						
MW2-14	To monitor cross-gradient groundwater quality.	WG	Q	V	√	V	V
MW2A-16	To monitor cross-gradient groundwater quality.	WG	Q	√	√	√	√
Downgradient Con	npliance Monitoring Wells (4 Locations, 1 Proposed Location)				l		
MW10-17	To monitor downgradient groundwater quality near the east property boundary.	WG	Q	\checkmark	√	V	V
MW12-22	To monitor downgradient groundwater quality at the south property boundary.	WG	Q	√	V	V	V
MW11-19	To monitor downgradient groundwater quality at the south east corner of the site.	WG	Q	V	√	√	√
MW3-14	To monitor groundwater quality immediately downgradient of Phase 1 East Landfill Cell.	WG	Q	V	√	√	√
MW13 (proposed)	To monitor groundwater quality immediately downgradient of the landfill. Sample once installed.	WG	Q	V	√	V	V
MW5A-15, MW5B-1	5, MW7-17, MW8-17, MW15A-18, MW15B-18, PZ1-19	WG	Q	-	-	-	-
Surface Water Mon	nitoring (4 Monitoring Locations, 2 Sampling Locations)						
Rico Gauge	To monitor the water level in Rico Lake via surface water	N/A	Q	-	-	-	-
SW15-02	gauge. To monitor surface water quality in Rico Lake	WS	N/A	-	-	-	√
McIvor Lake	To monitor the water level in McIvor Lake via BC Hydro Data Records - use link in notes below. Look up and record on day of monitoring event - data is only available for a limited period	N/A	Q	-	-	-	-
	on BC Hydro website ¹						,
SW15-01 Leachate Monitorin	To monitor surface water quality in McIvor Lake	WS	N/A	-	-	-	V
S06-21	To characteize leachate quality collected from the Leachate Sump at northeast end of Cell 1 West. Sampling location is from the leachate collection system sump riser pipe.	WL	N/A	V	V	√	√
TLIP	To assess leachate treatment performance and determine if changes to the treatment process are required. Upland to collect samples prior to discharge to the treated leachate infiltration pond (TLIP) to assess if quality meets the CSR DW Standards.	WL	N/A	-	-	-	-
S07-YY	To characteize leachate quality collected from the Leachate Sump in Cell 1 West. Monitoring will begin once waste has been dischaged to this cell.	WL	N/A	√	√	√	√
Leak Detection Mo	nitoring Program (5 Locations)				ı		ı
LDS	To monitor leakage at the primary liner of the landfill as part of the Trigger Level Response Plan. If water is present, collect a sample. Acess to the leak detection sump is on the north side of the landfill.	W	Q	1	٧	V	√
LDMP-1	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the north side of the landfill. If water is present call PM	W	Q	-	-	-	-
LDMP-2	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the north side of the landfill. If water is present call PM	W	Q	-	-	-	-
LDMP-3	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the east side of the landfill. If water is present call PM	W	Q	-	-	-	-
LDMP-4	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the east side of the landfill. If water is present call PM	W	Q	-	-	-	-
Landfill Gas in Soil	Monitoring (2 Locations)						
LFG1-22	To monitor landfill gas migration.	n/a	Q ²	-	-	-	V
LFG2-22	To monitor landfill gas migration.	n/a	Q ²	-	-	-	√
Field Quality Assur Field Blank	rance/Quality Control (QA/QC) ³	WG	-	√	√	√	-
Trip Blank - BTEX/V		WL/W	-	-	-	-	√
Groundwater Duplic Leachate Duplicate	ate	WG WL	-	√ √	√ √	√ √	√ -
Notes:		٧٧L	-	V	٧	γ	-

Notes:

- Look up current water level at the Ladore Dam: https://www.bchydro.com/energy-in-bc/operations/transmission-reservoir-data/previous-reservoir-elevations/vancouver_island/ladore_ldr.html
- $^{2}\text{-}$ Collect water level only if screen is blocked and a landfill gas in soil cannot be measured.
- ³ The number of QC samples should be 20% of all samples collected within 48 hours of each other; and include duplicate, field blank, and trip blank samples for each parameter. Add QA/QC samples to the November event if 20% has not been reached.

Environmental Monitoring Program Specification - 2023 Groundwater Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

		Qua	arterly	
Groundwater (WG)	Mar/Apr	Jun	Aug/Sep	Nov
Water Level Monitoring	'	•	•	•
Depth to Water	√	√	√	√
Depth to Bottom	√	\checkmark	√	\checkmark
Field Parameters	•			
Conductivity (uS/cm)	√	√	√	√
Oxidation reduction potential (mV)	√	\checkmark	√	\checkmark
pH (s.u.)	\checkmark	\checkmark	$\sqrt{}$	\checkmark
Temperature (deg C)	√	\checkmark	$\sqrt{}$	\checkmark
Total dissolved solids (mg/L)	\checkmark	\checkmark	$\sqrt{}$	\checkmark
Turbidity (ntu)	√	\checkmark	$\sqrt{}$	\checkmark
General Chemistry	·			
Alkalinity (Speciated)	√	√	√	√
Conductivity	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$
Chloride	√	\checkmark	$\sqrt{}$	\checkmark
Sulphate	√	\checkmark	$\sqrt{}$	$\sqrt{}$
Total Sulphide (Low Level) + H ₂ S Calc	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	√	\checkmark	\checkmark	\checkmark
Nitrate (as N)	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Nitrite (as N)	√	\checkmark	\checkmark	\checkmark
Nitrite/Nitrate (N+N)	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Orthophosphate	√	\checkmark	$\sqrt{}$	\checkmark
Total Dissolved Solids (TDS)	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Nutrients				
Ammonia Nitrogen	√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Metals		·		•
Dissolved CSR Metals (Incl. Hg)	√	√	√	√
Dissolved Hardness (as CaCO ₃)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Other				
LEPH/HEPH (Incl. PAH/EPH)	√	√	√	√

Environmental Monitoring Program Specification - 2023 Surface Water Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

Confess Meter (MC)		Qua	rterly	
Surface Water (WS)	Mar/Apr	Jun	Aug/Sep	Nov
Water Level Monitoring	'	·	'	
Water level at Rico Gauge	$\sqrt{}$	$\sqrt{}$	V	√
Record water level using BC Hydro Data Records - use link in Table 1.	√	V	V	V
Field Parameters	1	1	1	
Conductivity (uS/cm)	√	√	V	√
Oxidation reduction potential (mV)	√	\checkmark	$\sqrt{}$	√
pH (s.u.)	\checkmark	\checkmark	$\sqrt{}$	\checkmark
Temperature (deg C)	\checkmark	\checkmark	$\sqrt{}$	√
Total dissolved solids (mg/L)	\checkmark	\checkmark	\checkmark	\checkmark
Turbidity (ntu)	\checkmark	\checkmark	$\sqrt{}$	√
General Chemistry	•			
Alkalinity (Speciated)	√	√	√	√
Conductivity	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Chloride	\checkmark	\checkmark	\checkmark	\checkmark
Sulphate	\checkmark	\checkmark	\checkmark	\checkmark
Total Sulphide (Low Level) + H ₂ S Calc	\checkmark	\checkmark	\checkmark	\checkmark
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	\checkmark	\checkmark	\checkmark	\checkmark
Nitrate (as N)	\checkmark	\checkmark	\checkmark	\checkmark
Nitrite (as N)	\checkmark	\checkmark	\checkmark	\checkmark
Nitrite/Nitrate (N+N)	\checkmark	\checkmark	\checkmark	\checkmark
Orthophosphate	\checkmark	\checkmark	\checkmark	\checkmark
Total Suspended Solids (TSS)	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Nutrients	•			
Ammonia Nitrogen	√	√	\checkmark	√
Metals		· ———————		
Total CSR Metals (Incl. Hg)	√	√	√	√
Dissolved Hardness (as CaCO ₃)	√	\checkmark	√	√
Other				
LEPH/HEPH (Incl. PAH/EPH) ¹	-	-	-	-

^{1 -} If leachate concentrations for LEPH/HEPH are 80% within CSR 3.2 Aquatic Life Criteria, include LEPH/HEPH analysis in surface water during the next event

Environmental Monitoring Program Specification - 2023 Leachate Analytical Parameters New Landfill

Northwin Environmental, Campbell River, BC

Landard (AU)	Quarterly							
Leachate (WL)	Mar/Apr	Jun	Aug/Sep	Nov				
Water Level Monitoring	'		'					
Depth to Water	√	$\sqrt{}$	√	V				
Depth to Bottom	\checkmark	\checkmark	√	\checkmark				
Field Parameters								
Conductivity (uS/cm)	√	$\sqrt{}$	√	V				
Oxidation reduction potential (mV)	\checkmark	\checkmark	√	$\sqrt{}$				
pH (s.u.)	\checkmark	\checkmark	\checkmark	$\sqrt{}$				
Temperature (deg C)	\checkmark	$\sqrt{}$	√	$\sqrt{}$				
Total dissolved solids (mg/L)	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$				
Turbidity (ntu)	\checkmark	$\sqrt{}$	√	$\sqrt{}$				
General Chemistry								
Alkalinity (Speciated)	√	V	V	V				
Conductivity	\checkmark	\checkmark	√	\checkmark				
Chloride	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				
Sulphate	√	\checkmark	√	$\sqrt{}$				
Total Sulphide (Low Level) + H ₂ S Calc	\checkmark	\checkmark	$\sqrt{}$	\checkmark				
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	\checkmark	\checkmark	\checkmark	$\sqrt{}$				
Nitrate (as N)	\checkmark	\checkmark	\checkmark	\checkmark				
Nitrite (as N)	\checkmark	\checkmark	√	$\sqrt{}$				
Nitrite/Nitrate (N+N)	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$				
Orthophosphate	\checkmark	\checkmark	√	$\sqrt{}$				
Biological Oxygen Demand (Total) (BOD5)	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$				
Chemical Oxygen Demand (COD)	\checkmark	$\sqrt{}$	√	$\sqrt{}$				
Total Dissolved Solids (TDS)	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				
Total Suspended Solids (TSS)	\checkmark	\checkmark	√	\checkmark				
Nutrients								
Ammonia Nitrogen	√	V	√	V				
Metals	<u> </u>							
Total CSR Metals (Incl. Hg)	√	V	√	V				
Dissolved Hardness (as CaCO ₃)	√	V	√	V				
Other			· · · · · · · · · · · · · · · · · · ·					
LEPH/HEPH (Incl. PAH/EPH)	√	V	√	V				
BTEX/VPH	-	-	-	\checkmark				
Phenols	-	-	-					

Environmental Monitoring Program Specification - 2023 Leak Detection Water Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

Table 5

		Oue	rterly	
Leak Detection Water (W)				
	Mar/Apr	Jun	Aug/Sep	Nov
Water Level Monitoring	, , , , , , , , , , , , , , , , , , ,	,	1 ,	T ,
Depth to Water	√	V	√	√
Depth to Bottom	√	√	V	√
Field Parameters				
Conductivity (uS/cm)	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Oxidation reduction potential (mV)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
pH (s.u.)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Temperature (deg C)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Total dissolved solids (mg/L)	V	$\sqrt{}$	$\sqrt{}$	\checkmark
Turbidity (ntu)	V	$\sqrt{}$	$\sqrt{}$	\checkmark
General Chemistry	•	•	•	•
Alkalinity (Speciated)	√	V	√	√
Conductivity	√	\checkmark	√	V
Chloride	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark
Sulphate	V	V	√	$\sqrt{}$
Total Sulphide (Low Level) + H ₂ S Calc	V	V	$\sqrt{}$	\checkmark
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	V	V	V	\checkmark
Nitrate (as N)	V	$\sqrt{}$	$\sqrt{}$	\checkmark
Nitrite (as N)	V	V	V	\checkmark
Nitrite/Nitrate (N+N)	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Orthophosphate	V	√	√	\checkmark
Biological Oxygen Demand (BOD)	V	$\sqrt{}$	$\sqrt{}$	\checkmark
Chemical Oxygen Demand (COD)	V	V	√	\checkmark
Total Dissolved Solids (TDS)	V	$\sqrt{}$	√	\checkmark
Total Suspended Solids (TSS)	√	V	√	√
Nutrients				
Ammonia Nitrogen	V	V	√	√
Metals	!	!	!	!
Total CSR Metals (Incl. Hg)	V	V	V	√
Dissolved Hardness (as CaCO ₃)	V	V	V	\checkmark
Other	ı			
LEPH/HEPH (Incl. PAH/EPH)	V	V	√	V
BTEX/VPH	-	-	-	\checkmark
Phenols	-	-	-	V

Appendix G

EMP Field Sample Keys and Laboratory Reports

Q1 2023 EMP FSK
2023 Environmental Monitoring Program
New Landfill, Upland
Campbell River, British Columbia

Sample Name	Location	Date	Time	Туре	Matrix	Parent Sample Name	WaterDepth	DepthUnit	DryYesNo	Temperature	Temperature Unit	Field pH (s.u.)	ORP	ORP units	Conductivity	Conductivity Unit	Turbidity (NTU)	Dissolved Oxygen (DO)	DO Units	TDS	TDS Units
Rico Gauge~290323	Rico Gauge	03/29/2023	07:00	N	WG	-	1.88	m	No	-	-	-	-	-	-	-	-	-	-		-
LDS~290323	LDS	03/29/2023	07:00	N	WG	-	DRY	m BTOR	Yes	-	-	-	-	-	-	-	-	-	-	-	- '
LDMP-1~~290323	LDMP-1	03/29/2023	07:00	N	WG	-	DRY	m BTOR	Yes	-	-	-	-	-	-	-	-	-	-	-	- '
LDMP-2~~290323	LDMP-2	03/29/2023	07:00	N	WG	-	DRY	m BTOR	Yes	-	-	-	-	-	-	-	-	-	-	-	- '
LDMP-3~~290323	LDMP-3	03/29/2023	07:00	N	WG	-	DRY	m BTOR	Yes	-	-	-	-	-	-	-	-	-	-	-	- '
LDMP-4~~290323	LDMP-4	03/29/2023	07:00	N	WG	-	DRY	m BTOR	Yes	-	-	-	-	-	-	-	-	-	-	-	- '
WG-11222680-280323-KH-01	MW2A-16	03/28/2023	13:00	N	WG	-	17.406	m BTOR	No	12.12	deg C	7.63	318	millivolts	62	uS/cm	3.5	8.32	mg/L	40	mg/L
WG-11222680-280323-KH-02	MW2-14	03/28/2023	14:10	N	WG	-	17.471	m BTOR	No	9.90	deg C	6.8	382	millivolts	110	uS/cm	2.8	11.07	mg/L	70	mg/L
WL-11222680-280323-KH-01	S06-21	03/28/2023	15:50	N	WG	-	17.440	m BTOR	No	16.53	deg C	7.67	-376	millivolts	3730	uS/cm	30.3	8.59	mg/L	2100	mg/L
WL-11222680-280323-KH-02	S06-21	03/28/2023	16:00	FD	WG	WL-11222680-280323-KH-01	17.440	m BTOR	No	16.53	deg C	7.67	-376	millivolts	3730	uS/cm	30.3	8.59	mg/L	2100	mg/L
WG-11222680-280323-KH-03	MW1-14	03/28/2023	17:45	N	WG	-	8.430	m BTOR	No	13.87	deg C	7.58	105	millivolts	199	uS/cm	24.0	8.96	mg/L	129	mg/L
WG-11222680-280323-KH-04	MW9-17	03/28/2023	18:45	N	WG	-	24.566	m BTOR	No	7.41	deg C	7.51	150	millivolts	45	uS/cm	3.3	10.82	mg/L	29	mg/L
WG-11222680-290323-KH-05	MW12-22	03/29/2023	10:45	N	WG	-	40.513	m BTOR	No	10.37	deg C	7.56	173	millivolts	124	uS/cm	0.5	11.53	mg/L	80	mg/L
WG-11222680-290323-KH-06	MW12-22	03/29/2023	10:55	FD	WG	WG-11222680-290323-KH-05	40.513	m BTOR	No	10.37	deg C	7.56	173	millivolts	124	uS/cm	0.5	11.53	mg/L	80	mg/L
WG-11222680-290323-KH-07	MW11-19	03/29/2023	13:45	N	WG	-	48.094	m BTOR	No	16.54	deg C	7.67	150	millivolts	171	uS/cm	18.0	-	mg/L	111	mg/L
WG-11222680-290323-KH-08	FIELD BLANK	03/29/2023	13:20	FB	WGQ	-	-	-	No	-	-	-	-	-	-	-	-	-	-	-	_
WG-11222680-290323-KH-09	MW10-17	03/29/2023	16:00	N	WG	-	42.028	m BTOR	No	12.33	deg C	7.65	140	millivolts	159	uS/cm	2.5	-	mg/L	103	mg/L
WG-11222680-KH-10	MW6-17	03/29/2023	17:00	N	WG	-	8.023	m BTOR	No	10.58	deg C	7.09	171	millivolts	432	uS/cm	800	-	mg/L	2810	mg/L

Q2 2023 EMP FSK 2023 Environmental Monitoring Program New Landfill, Upland Campbell River, British Columbia

Location	Date Time	Sample Name	Matrix	Туре	Parent Sample Name	Field pH (s.u.)	Conductivity	Conductivity Unit	Temperature	Temperature Unit	Turbidity (NTU)	ORP	ORP Units	Dissolved Oxygen (DO)	DO Units
MW22-12	07/17/2023 15:15:00	WG-11222680-170723-KH-01	WG	N	-	7.24	149	uS/cm	16.19	Deg C	3.8	196	millivolts	8.93	mg/L
MW10-17	07/17/2023 16:15:00	WG-11222680-170723-KH-02	WG	N	-	7.75	148	uS/cm	13.68	Deg C	2.7	202	millivolts	11.40	mg/L
MW9-17	07/17/2023 17:20:00	WG-11222680-170723-KH-03	WG	N	-	7.84	57	uS/cm	19.42	Deg C	3.0	189	millivolts	12.4	mg/L
MW9-17	07/17/2023 17:30:00	WG-11222680-170723-KH-04	WG	FD	WG-11222680-170723-KH-03	7.84	57	uS/cm	19.42	Deg C	3.0	189	millivolts	12.4	mg/L
MW11-19	07/18/2023 10:40:00	WG-11222680-180723-KH-05	WG	N	-	7.70	191	uS/cm	16.92	Deg C	45.9	139	millivolts	6.39	mg/L
MW1-14	07/18/2023 12:10:00	WG-11222680-180723-KH-06	WG	N	-	7.65	132	uS/cm	16.90	Deg C	9.1	148	millivolts	10.30	mg/L
MW2A-16	07/18/2023 14:00:00	WG-11222680-180723-KH-08	WG	N	-	8.59	66	uS/cm	15.95	Deg C	4.3	118	millivolts	10.12	mg/L
MW2-14	07/18/2023 13:45:00	WG-11222680-180723-KH-07	WG	N	-	6.99	191	uS/cm	14.96	Deg C	8.5	195	millivolts	11.94	mg/L
MW3-14	07/18/2023 15:30:00	WG-11222680-180723-KH-09	WG	N	-	7.37	117	uS/cm	15.26	Deg C	3.1	160	millivolts	12.09	mg/L
S06-21	07/18/2023 16:50:00	WL-11222680-180723-KH-01	W	N	-	6.32	4150	uS/cm	24.04	Deg C	282	-2	millivolts	9.08	mg/L
MW6-17	07/19/2023 08:30:00	WG-11222680-190723-KH-10	WG	N	-	6.99	484	uS/cm	14.59	Deg C	300	152	millivolts	3.33	mg/L
S06-21	07/18/2023 17:00:00	WL-11222680-180723-KH-02	W	FD	WL-11222680-180723-KH-01	6.32	4150	uS/cm	24.04	Deg C	282	-2	millivolts	9.08	mg/L
Field Blank	07/18/2023 09:30:00	WG-11222680-180723-KH-11	WGQ	FB	-	-	-	-	-	-	=	-	-	-	-

Q3 2023 EMP FSK 2023 Environmental Monitoring Program New Landfill, Upland Campbell River, British Columbia

Location	Date Time	Sample Name	Matrix	Туре	Parent Sample Name	Field pH (s.u.)	Conductivity	Conductivity Unit	Temperature	Temperature Unit	Turbidity (NTU)	ORP	ORP Units	Dissolved Oxygen (DO)	DO Units	TDS	TDS Units
MW10-17	09/06/2023 16:00:00	WG-11222680-060923-CXW-01	WG	N	-	7.89	169	uS/cm	12.57	deg C	62.0	178	millivolt	7.66	mg/L	109	mg/L
MW3-14	09/07/2023 08:45:00	WG-11222680-070923-CXW-03	WG	Ν	-	6.61	131	uS/cm	11.02	deg C	4.5	258	millivolt	8.14	mg/L	85	mg/L
MW2A-16	09/07/2023 09:55:00	WG-11222680-070923-CXW-04	WG	Ν	-	8.20	83	uS/cm	10.56	deg C	5.0	150	millivolt	3.50	mg/L	54	mg/L
MW2-14	09/07/2023 10:05:00	WG-11222680-070923-CXW-05	WG	Ν	-	6.74	165	uS/cm	11.84	deg C	4.1	105	millivolt	7.92	mg/L	107	mg/L
MW2-14	09/07/2023 10:07:00	WG-11222680-070923-CXW-06	WG	FD	WG-11222680-070923-CXW-05	6.74	165	uS/cm	11.84	deg C	4.1	105	millivolt	7.92	mg/L	107	mg/L
MW1-14	09/07/2023 11:20:00	WG-11222680-070923-CXW-07	WG	Ν	-	7.32	86	uS/cm	12.36	deg C	4.4	103	millivolt	10.67	mg/L	56	mg/L
MW6-17	09/07/2023 12:15:00	WG-11222680-070623-CXW-08	WG	Ν	-	6.74	428	uS/cm	18.24	deg C	122	129	millivolt	1.56	mg/L	279	mg/L
MW11-19	09/07/2023 12:40:00	WG-11222680-070923-CXW-09	WG	Ν	-	6.74	250	uS/cm	18.72	deg C	73.7	134	millivolt	3.63	mg/L	163	mg/L
MW12-22	09/06/2023 16:55:00	WG-11222680-060923-CXW-02	WG	Ν	-	7.37	189	uS/cm	10.61	deg C	22.4	194	millivolt	11.64	mg/L	124	mg/L
LDS	09/07/2023 14:39:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW9-17	09/07/2023 15:15:00	WG-11222680-070923-CXW-10	WG	Ν	-	7.73	74	uS/cm	12.35	deg C	0.1	94	millivolt	4.46	mg/L	48	mg/L
FIELD BLANK	09/08/2023 08:25:00	WG-11222680-080923-CXW-11	WGQ	FB	-	-	-	-	-	-	-	-	-	-	-	-	-

Q4 2023 EMP FSK 2023 Environmental Monitoring Program New Landfill, Upland Campbell River, British Columbia

Location	Date Time	Sample Name	Matrix	Туре	Parent Sample Name	Field pH (s.u.)	Conductivity	Conductivity Unit	Temperature	Temperature Unit	Turbidity (NTU)	ORP	ORP Units	Dissolved Oxygen (DO)	DO Units
MW9-17	11/27/2023 13:10:00	WG-11222680-271123-KH-01	WG	N	-	7.63	70	uS/cm	17.08	deg C	3.9	252	millivolts	9.13	mg/L
MW10-17	11/27/2023 14:15:00	WG-11222680-271123-KH-02	WG	N	-	7.98	350	uS/cm	10.84	deg C	3.4	256	millivolts	10.20	mg/L
MW1-14	11/27/2023 16:50:00	WG-11222680-271123-KH-05	WG	N	-	7.54	102	uS/cm	13.12	deg C	37.1	284	millivolts	9.77	mg/L
MW12-22	11/27/2023 16:00:00	WG-11222680-271123-KH-03	WG	N	-	7.25	323	uS/cm	9.48	deg C	2.6	288	millivolts	6.63	mg/L
MW12-22	11/27/2023 16:10:00	WG-11222680-271123-KH-04	WG	FD	WG-11222680-271123-KH-03	7.25	323	uS/cm	9.48	deg C	2.6	288	millivolts	6.63	mg/L
MW11-19	11/28/2023 09:30:00	WG-11222680-281123-KH-06	WG	N	-	7.37	286	uS/cm	10.72	deg C	5.6	251	millivolts	5.81	mg/L
SW15-01	11/28/2023 10:00:00	WS-11222680-281123-KH-01	WS	N	-	8.12	58	uS/cm	8.26	deg C	0	197	millivolts	7.12	mg/L
SW15-02	11/28/2023 10:30:00	WS-11222680-281123-KH-02	WS	N	-	7.57	62	uS/cm	6.33	deg C	2.0	207	millivolts	6.99	mg/L
MW2-14	11/28/2023 14:45:00	WG-11222680-281123-KH-07	WG	N	-	7.73	164	uS/cm	10.55	deg C	1.2	219	millivolts	11.37	mg/L
MW2A-16	11/28/2023 15:00:00	WG-11222680-281123-KH-08	WG	N	-	8.38	78	uS/cm	10.97	deg C	2.0	201	millivolts	10.82	mg/L
MW6-17	11/28/2023 16:30:00	WG-11222680-281123-KH-09	WG	N	-	7.19	420	uS/cm	9.64	deg C	37.8	210	millivolts	11.53	mg/L
S06-21	11/28/2023 14:45:00	WL-11222680-281123-KH-01	WL	N	-	6.53	3.35	uS/cm	9.61	deg C	9	60	millivolts	10.47	mg/L
MW3-14	11/29/2023 09:45:00	WG-11222680-291123-KH-10	WG	N	-	6.50	135	uS/cm	9.54	deg C	1.5	249	millivolts	7.26	mg/L

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL

Your C.O.C. #: c#689991-01-01, c#689994-01-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

> Report Date: 2023/04/05 Report #: R3319089

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C322057 Received: 2023/03/30, 08:27

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	6	N/A	2023/03/31	BBY6SOP-00026	SM 23 2320 B m
Biochemical Oxygen Demand	2	2023/03/31	2023/04/05	BBY6SOP-00045	SM 23 5210 B m
Chloride/Sulphate by Auto Colourimetry	6	N/A	2023/03/31	BBY6SOP-00011 /	SM23-4500-Cl/SO4-E m
				BBY6SOP-00017	
COD by Colorimeter	2	N/A	2023/04/01	BBY6SOP-00024	SM 23 5220 D m
Conductivity @25C	6	N/A	2023/03/31	BBY6SOP-00026	SM 23 2510 B m
Sulphide (as H2S) (1)	6	N/A	2023/04/04		Auto Calc
Un-ionized Hydrogen Sulphide as S Calc	5	N/A	2023/04/04	BBY WI-00033	Auto Calc
Un-ionized Hydrogen Sulphide as S Calc	1	N/A	2023/04/05	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	4	N/A	2023/03/31	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	2	N/A	2023/04/05	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CV (2)	4	2023/04/04	2023/04/04	AB SOP-00084	BCMOE BCLM Oct2013 m
Mercury (Total) by CV	2	2023/04/04	2023/04/04	AB SOP-00084	BCMOE BCLM Oct2013 m
ICP-OES Dissolved Metals in Water (2)	2	N/A	2023/04/04	BBY7SOP-00018	EPA 6010d m
EPH in Water when PAH required	6	2023/04/04	2023/04/04	BBY8SOP-00029	BCMOE BCLM Sep2017 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	4	N/A	2023/03/31	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (2)	4	N/A	2023/03/31	BBY7SOP-00002	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	2023/03/30	2023/04/04	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	2	2023/04/03	2023/04/04	BBY7SOP-00003 /	EPA 6020b R2 m
				BBY7SOP-00002	
Ammonia-N (Total)	6	N/A	2023/03/31	AB SOP-00007	SM 23 4500 NH3 A G m
Nitrate + Nitrite (N)	6	N/A	2023/03/31	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	6	N/A	2023/03/31	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrogen - Nitrate (as N)	6	N/A	2023/03/31	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	6	2023/04/04	2023/04/04	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (3)	6	N/A	2023/04/05	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	6	N/A	2023/03/30	BBY7 WI-00004	SM 23 3030B m
Orthophosphate by Konelab (4)	6	N/A	2023/03/31	BBY6SOP-00013	SM 23 4500-P E m
Total Sulphide (1)	6	N/A	2023/04/04	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue)	6	2023/04/03	2023/04/04	BBY6SOP-00033	SM 23 2540 C m
EPH less PAH in Water by GC/FID (5)	6	N/A	2023/04/05	BBY WI-00033	Auto Calc
Total Suspended Solids (NFR)	2	2023/04/04	2023/04/05	BBY6SOP-00034	SM 24 2540 D m

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL

Your C.O.C. #: c#689991-01-01, c#689994-01-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

Report Date: 2023/04/05

Report #: R3319089 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C322057 Received: 2023/03/30, 08:27

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Field pH	5	N/A	2023/04/03	}	
Field Temperature	5	N/A	2023/04/03	}	

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St. , Calgary, AB, T2E 6P8 $\,$
- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (4) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (5) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)
- HEPH = EPH (C19 to C32) (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL

Your C.O.C. #: c#689991-01-01, c#689994-01-01

Report Date: 2023/04/05

Report #: R3319089 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C322057 Received: 2023/03/30, 08:27

Encryption Key

Bureau Veritas

05 Apr 2023 16:17:43

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist–Emergency Spill Response Email: Brody.Andersen@bureauveritas.com

Phone# (780)577-7120

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BOG477	BOG478	BOG479	BOG480		
Sampling Date		2023/03/28	2023/03/28	2023/03/28	2023/03/28		
Sampling Date		13:00	14:10	18:45	17:45		
COC Number		c#689991-01-01	c#689991-01-01	c#689991-01-01	c#689991-01-01		
	UNITS	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	RDL	QC Batch
	ONITS	-KH-01	-KH-02	-KH-04	-KH-03	KDL	QC Dateil
ANIONS							
Nitrite (N)	mg/L	<0.0050	<0.0050	<0.0050	0.0171	0.0050	A925477
Calculated Parameters	•					•	
Filter and HNO3 Preservatio	N/A	FIELD	FIELD	FIELD	FIELD	N/A	ONSITE
Nitrate (N)	mg/L	0.037	0.245	0.027	1.68	0.020	A923718
Sulphide (as H2S)	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	A923617
Field Parameters							
Field pH	рН	7.63	6.80	7.51	7.58	N/A	ONSITE
Field Temperature	°C	12.12	9.90	7.41	13.87	N/A	ONSITE
Misc. Inorganics	•						,
Conductivity	uS/cm	74	130	53	170	2.0	A925432
Total Dissolved Solids	mg/L	64	92	46	94	10	A926922
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	A925434
Alkalinity (Total as CaCO3)	mg/L	34	50	23	52	1.0	A925434
Bicarbonate (HCO3)	mg/L	41	62	28	63	1.0	A925434
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	A925434
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	A925434
Total Sulphide	mg/L	<0.0018	<0.0018	<0.0018	<0.0018	0.0018	A926674
Chloride (CI)	mg/L	<1.0	3.3	<1.0	14	1.0	A925528
Sulphate (SO4)	mg/L	2.4	7.0	2.4	2.8	1.0	A925528
Nutrients	•						,
Total Ammonia (N)	mg/L	<0.015	<0.015	<0.015	<0.015	0.015	A925542
Orthophosphate (P)	mg/L	0.030	0.0051	0.0037	0.0057	0.0030	A924129
Nitrate plus Nitrite (N)	mg/L	0.037	0.245	0.027	1.70	0.020	A925471
RDL = Reportable Detection L	imit						
1							

N/A = Not Applicable

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BOG483	BOG483	BOG484		
Sampling Date		2023/03/28 16:00	2023/03/28 16:00	2023/03/28 15:50		
COC Number		c#689994-01-01	c#689994-01-01	c#689994-01-01		
	UNITS	WL-11222680-280323- KH-02	WL-11222680-280323- KH-02 Lab-Dup	WL-11222680-280323- KH-01	RDL	QC Batch
ANIONS						
Nitrite (N)	mg/L	0.0053	N/A	<0.0050	0.0050	A925477
Calculated Parameters		I	1	1	ı	
Filter and HNO3 Preservatio	N/A	FIELD	N/A	FIELD	N/A	ONSITE
Dissolved Hardness (CaCO3)	mg/L	1040	N/A	1010	0.50	A924022
Nitrate (N)	mg/L	<0.020	N/A	<0.020	0.020	A923718
Sulphide (as H2S)	mg/L	13	N/A	13	0.19	A923617
Demand Parameters	•				•	
Biochemical Oxygen Demand	mg/L	27	29	26	3.0	A924844
Chemical Oxygen Demand	mg/L	392	N/A	370	10	A925066
Field Parameters	•					
Field pH	рН	N/A	N/A	7.67	N/A	ONSITE
Field Temperature	°C	N/A	N/A	16.53	N/A	ONSITE
Misc. Inorganics	•				•	
Conductivity	uS/cm	3200	N/A	3200	2.0	A925432
Total Dissolved Solids	mg/L	2300	N/A	2300	10	A926922
Total Suspended Solids	mg/L	59	N/A	38	1.0	A927556
Anions	•					
Alkalinity (PP as CaCO3)	mg/L	<1.0	N/A	<1.0	1.0	A925434
Alkalinity (Total as CaCO3)	mg/L	830	N/A	840	1.0	A925434
Bicarbonate (HCO3)	mg/L	1000	N/A	1000	1.0	A925434
Carbonate (CO3)	mg/L	<1.0	N/A	<1.0	1.0	A925434
Hydroxide (OH)	mg/L	<1.0	N/A	<1.0	1.0	A925434
Total Sulphide	mg/L	12	N/A	12	0.18	A926674
Chloride (CI)	mg/L	190	N/A	190	5.0	A925528
Sulphate (SO4)	mg/L	720	N/A	730	25	A925528
Nutrients						
Total Ammonia (N)	mg/L	62	N/A	61	1.5	A925542
Orthophosphate (P)	mg/L	0.19	N/A	0.18	0.0030	A924129
Nitrate plus Nitrite (N)	mg/L	<0.020	N/A	<0.020	0.020	A925471
RDL = Reportable Detection L Lab-Dup = Laboratory Initiate		cate				

N/A = Not Applicable

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		BOG483	BOG484		
Sampling Date		2023/03/28 16:00	2023/03/28 15:50		
COC Number		c#689994-01-01	c#689994-01-01		
	UNITS	WL-11222680-280323- KH-02	WL-11222680-280323- KH-01	RDL	QC Batch
Dissolved Metals by ICP					
Dissolved Calcium (Ca)	mg/L	354	339	0.50	A927966
Dissolved Magnesium (Mg)	mg/L	38.5	38.5	0.050	A927966
RDL = Reportable Detection	Limit				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

MISCELLANEOUS (WATER)

Bureau Veritas ID		BOG477	BOG478	BOG479		
Sampling Date		2023/03/28	2023/03/28	2023/03/28		
Sampling Date		13:00	14:10	18:45		
COC Number		c#689991-01-01	c#689991-01-01	c#689991-01-01		
	UNITS	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	RDL	QC Batch
	UNITS	-KH-01	-KH-02	-KH-04	KDL	QC Battii
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as H2	mg/L	<0.0050	<0.0050	<0.0050	0.0050	A924313
RDL = Reportable Detection Limit						
Bureau Veritas ID		BOG480	BOG483	BOG484		
Committee Date		2023/03/28	2023/03/28	2023/03/28		
Sampling Date		17:45	16:00	15:50		
COC Number		c#689991-01-01	c#689994-01-01	c#689994-01-01		
	UNITS	WG-11222680-280323 -KH-03	WL-11222680-280323- KH-02	WL-11222680-280323- KH-01	RDL	QC Batch
Calculated Parameters		-	-		•	
Total Un-ionized Hydrogen Sulfide as H2	mg/L	<0.0050	CALCERROR	2.4	0.0050	A924313
RDL = Reportable Detection Limit					•	

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOG477	BOG478	BOG479	BOG480		
Sampling Date		2023/03/28	2023/03/28	2023/03/28	2023/03/28		
Sampling Date		13:00	14:10	18:45	17:45		
COC Number		c#689991-01-01	c#689991-01-01	c#689991-01-01	c#689991-01-01		
	UNITS	WG-11222680-280323 -KH-01	WG-11222680-280323 -KH-02	WG-11222680-280323 -KH-04	WG-11222680-280323 -KH-03	RDL	QC Batch
Calculated Parameters							
Low Molecular Weight PAH's	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A924067
High Molecular Weight PAH`	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A924067
Total PAH	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A924067
Polycyclic Aromatics			1		I.		Į.
Quinoline	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A927637
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
2-Methylnaphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A927637
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	A927637
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	A927637
Chrysene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	A927637
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A927637
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	A927637
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A924068
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A924068
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A927641
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A927641
RDL = Reportable Detection L	imit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOG477	BOG478	BOG479	BOG480		
Samuling Date		2023/03/28	2023/03/28	2023/03/28	2023/03/28		
Sampling Date		13:00	14:10	18:45	17:45		
COC Number		c#689991-01-01	c#689991-01-01	c#689991-01-01	c#689991-01-01		
	LINUTC	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	DDI	OC Datab
	UNITS	-KH-01	-KH-02	-KH-04	-KH-03	RDL	QC Batch
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	101	100	97	100	N/A	A927641
D10-ANTHRACENE (sur.)	%	97	98	96	99	N/A	A927637
D8-ACENAPHTHYLENE (sur.)	%	88	88	85	89	N/A	A927637
D8-NAPHTHALENE (sur.)	%	83	82	80	84	N/A	A927637
TERPHENYL-D14 (sur.)	%	86	85	83	86	N/A	A927637
RDL = Reportable Detection L	imit						•

N/A = Not Applicable

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOG483		BOG484		
Sampling Date		2023/03/28		2023/03/28		
		16:00		15:50		
COC Number		c#689994-01-01		c#689994-01-01		
	UNITS	WL-11222680-280323- KH-02	RDL	WL-11222680-280323- KH-01	RDL	QC Batch
Calculated Parameters						•
Low Molecular Weight PAH's	ug/L	4.2	0.10	4.0	0.10	A924067
High Molecular Weight PAH`	ug/L	0.066	0.050	0.064	0.050	A924067
Total PAH	ug/L	4.2	0.10	4.0	0.10	A924067
Polycyclic Aromatics					ı	ı
Quinoline	ug/L	<0.039 (1)	0.039	<0.037 (1)	0.037	A927637
Naphthalene	ug/L	3.1	0.10	3.0	0.10	A927637
1-Methylnaphthalene	ug/L	0.19	0.050	0.19	0.050	A927637
2-Methylnaphthalene	ug/L	0.28	0.10	0.27	0.10	A927637
Acenaphthylene	ug/L	<0.050	0.050	<0.050	0.050	A927637
Acenaphthene	ug/L	0.23	0.050	0.23	0.050	A927637
Fluorene	ug/L	0.11	0.050	0.10	0.050	A927637
Phenanthrene	ug/L	0.10	0.050	0.10	0.050	A927637
Anthracene	ug/L	0.026	0.010	0.025	0.010	A927637
Acridine	ug/L	0.096	0.050	0.093	0.050	A927637
Fluoranthene	ug/L	0.035	0.020	0.034	0.020	A927637
Pyrene	ug/L	0.031	0.020	0.030	0.020	A927637
Benzo(a)anthracene	ug/L	<0.010	0.010	<0.010	0.010	A927637
Chrysene	ug/L	<0.020	0.020	<0.020	0.020	A927637
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	<0.030	0.030	A927637
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	A927637
Benzo(a)pyrene	ug/L	<0.0050	0.0050	<0.0050	0.0050	A927637
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	A927637
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	<0.0030	0.0030	A927637
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	A927637
Calculated Parameters						
LEPH (C10-C19 less PAH)	mg/L	0.43	0.20	0.42	0.20	A924068
HEPH (C19-C32 less PAH)	mg/L	0.22	0.20	0.23	0.20	A924068
Ext. Pet. Hydrocarbon						
EPH (C10-C19)	mg/L	0.43	0.20	0.42	0.20	A927641
EPH (C19-C32)	mg/L	0.22	0.20	0.23	0.20	A927641
RDL = Reportable Detection L	imit					
(1) Detection limit raised due	to mati	rix interference.				

(1) Detection limit raised due to matrix interference.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOG483		BOG484				
Sampling Date		2023/03/28 16:00		2023/03/28 15:50				
COC Number		c#689994-01-01		c#689994-01-01				
	UNITS	WL-11222680-280323- KH-02	RDL	WL-11222680-280323- KH-01	RDL	QC Batch		
Surrogate Recovery (%)	Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	95	N/A	96	N/A	A927641		
D10-ANTHRACENE (sur.)	%	88	N/A	88	N/A	A927637		
D8-ACENAPHTHYLENE (sur.)	%	94	N/A	94	N/A	A927637		
D8-NAPHTHALENE (sur.)	%	84	N/A	84	N/A	A927637		
TERPHENYL-D14 (sur.)	%	79	N/A	80	N/A	A927637		
RDL = Reportable Detection Limit N/A = Not Applicable								

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		BOG477	BOG478	BOG479	BOG480		
Carrallia - Data		2023/03/28	2023/03/28	2023/03/28	2023/03/28		
Sampling Date		13:00	14:10	18:45	17:45		
COC Number		c#689991-01-01	c#689991-01-01	c#689991-01-01	c#689991-01-01		
	UNITS	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	WG-11222680-280323	RDL	QC Batch
	ONITS	-KH-01	-KH-02	-KH-04	-KH-03	NDL	QC Daten
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	33.8	55.2	24.6	78.4	0.50	A924022
Elements	•						
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	<0.0019	<0.0019	0.0019	A927497
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	9.2	<3.0	<3.0	<3.0	3.0	A924870
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	A924870
Dissolved Arsenic (As)	ug/L	0.96	<0.10	<0.10	<0.10	0.10	A924870
Dissolved Barium (Ba)	ug/L	2.0	1.4	<1.0	1.5	1.0	A924870
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A924870
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A924870
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	A924870
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	A924870
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A924870
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	A924870
Dissolved Copper (Cu)	ug/L	<0.20	0.26	<0.20	<0.20	0.20	A924870
Dissolved Iron (Fe)	ug/L	10.7	<5.0	<5.0	<5.0	5.0	A924870
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	A924870
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	A924870
Dissolved Manganese (Mn)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A924870
Dissolved Molybdenum (Mo	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A924870
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A924870
Dissolved Phosphorus (P)	ug/L	34	<10	<10	11	10	A924870
Dissolved Selenium (Se)	ug/L	<0.10	0.18	<0.10	0.14	0.10	A924870
Dissolved Silicon (Si)	ug/L	4210	5590	2610	5860	100	A924870
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A924870
Dissolved Strontium (Sr)	ug/L	13.7	28.0	10.6	41.9	1.0	A924870
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	A924870
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A924870
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A924870
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A924870
Dissolved Vanadium (V)	ug/L	7.5	<5.0	<5.0	<5.0	5.0	A924870
RDL = Reportable Detection L	imit						
•							

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		BOG477	BOG478	BOG479	BOG480		
Sampling Date		2023/03/28 13:00	2023/03/28 14:10	2023/03/28 18:45	2023/03/28 17:45		
COC Number		c#689991-01-01	c#689991-01-01	c#689991-01-01	c#689991-01-01		
	UNITS	WG-11222680-280323 -KH-01	WG-11222680-280323 -KH-02	WG-11222680-280323 -KH-04	WG-11222680-280323 -KH-03	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A924870
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A924870
Dissolved Calcium (Ca)	mg/L	11.0	17.3	8.30	26.1	0.050	A924024
Dissolved Magnesium (Mg)	mg/L	1.50	2.91	0.940	3.23	0.050	A924024
Dissolved Potassium (K)	mg/L	0.177	0.201	0.112	0.264	0.050	A924024
Dissolved Sodium (Na)	mg/L	1.02	3.16	0.653	4.67	0.050	A924024
Dissolved Sulphur (S)	mg/L	<3.0	<3.0	<3.0	<3.0	3.0	A924024
RDL = Reportable Detection I	imit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR TOTAL METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		BOG483	BOG484		
Sampling Date		2023/03/28	2023/03/28		
Jamping Date		16:00	15:50		
COC Number		c#689994-01-01	c#689994-01-01		
	UNITS	WL-11222680-280323- KH-02	WL-11222680-280323- KH-01	RDL	QC Batch
Elements					
Total Mercury (Hg)	ug/L	<0.038 (1)	<0.038 (1)	0.038	A927551
Total Metals by ICPMS	•				•
Total Aluminum (Al)	ug/L	482	488	30	A926714
Total Antimony (Sb)	ug/L	<5.0	<5.0	5.0	A926714
Total Arsenic (As)	ug/L	19.1	19.3	1.0	A926714
Total Barium (Ba)	ug/L	120	124	10	A926714
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	A926714
Total Bismuth (Bi)	ug/L	<10	<10	10	A926714
Total Boron (B)	ug/L	11600	12200	500	A926714
Total Cadmium (Cd)	ug/L	<0.10	<0.10	0.10	A926714
Total Chromium (Cr)	ug/L	20	19	10	A926714
Total Cobalt (Co)	ug/L	2.6	2.9	2.0	A926714
Total Copper (Cu)	ug/L	7.2	7.5	5.0	A926714
Total Iron (Fe)	ug/L	2160	2290	100	A926714
Total Lead (Pb)	ug/L	<2.0	<2.0	2.0	A926714
Total Lithium (Li)	ug/L	<20	<20	20	A926714
Total Manganese (Mn)	ug/L	923	957	10	A926714
Total Molybdenum (Mo)	ug/L	<10	<10	10	A926714
Total Nickel (Ni)	ug/L	27	18	10	A926714
Total Phosphorus (P)	ug/L	558	572	100	A926714
Total Selenium (Se)	ug/L	<1.0	<1.0	1.0	A926714
Total Silicon (Si)	ug/L	14600	15000	1000	A926714
Total Silver (Ag)	ug/L	<0.20	<0.20	0.20	A926714
Total Strontium (Sr)	ug/L	2300	2370	10	A926714
Total Thallium (TI)	ug/L	<0.10	<0.10	0.10	A926714
Total Tin (Sn)	ug/L	<50	<50	50	A926714
Total Titanium (Ti)	ug/L	<50	<50	50	A926714
Total Uranium (U)	ug/L	<1.0	<1.0	1.0	A926714
Total Vanadium (V)	ug/L	<50	<50	50	A926714
Total Zinc (Zn)	ug/L	<50	51	50	A926714
RDL = Reportable Detection	n Limit				

Reportable Detection Limit

⁽¹⁾ Detection limit raised based on sample volume used and sample matrix

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR TOTAL METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		BOG483	BOG484		
Sampling Date		2023/03/28 16:00	2023/03/28 15:50		
COC Number		c#689994-01-01	c#689994-01-01		
	UNITS	WL-11222680-280323- KH-02	WL-11222680-280323- KH-01	RDL	QC Batch
Total Zirconium (Zr)	ug/L	1.4	1.5	1.0	A926714
Total Calcium (Ca)	mg/L	357	366	0.50	A924188
Total Magnesium (Mg)	mg/L	41.1	41.9	0.50	A924188
Total Potassium (K)	mg/L	48.9	50.0	0.50	A924188
Total Sodium (Na)	mg/L	235	240	0.50	A924188
Total Sulphur (S)	mg/L	241	248	30	A924188
RDL = Reportable Detection	Limit				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A927637	D10-ANTHRACENE (sur.)	2023/04/04			94	50 - 140	104	%		
A927637	D8-ACENAPHTHYLENE (sur.)	2023/04/04			91	50 - 140	93	%		
A927637	D8-NAPHTHALENE (sur.)	2023/04/04			84	50 - 140	87	%		
A927637	TERPHENYL-D14 (sur.)	2023/04/04			87	50 - 140	92	%		
A927641	O-TERPHENYL (sur.)	2023/04/04			96	60 - 140	103	%		
A924129	Orthophosphate (P)	2023/03/31	97	80 - 120	101	80 - 120	<0.0030	mg/L	2.7 (1)	20
A924844	Biochemical Oxygen Demand	2023/04/05			93	85 - 115	<2.0	mg/L	7.7 (2)	20
A924870	Dissolved Aluminum (Al)	2023/03/31	97	80 - 120	102	80 - 120	<3.0	ug/L	5.1 (1)	20
A924870	Dissolved Antimony (Sb)	2023/03/31	101	80 - 120	104	80 - 120	<0.50	ug/L	NC (1)	20
A924870	Dissolved Arsenic (As)	2023/03/31	104	80 - 120	103	80 - 120	<0.10	ug/L	2.0 (1)	20
A924870	Dissolved Barium (Ba)	2023/03/31	NC	80 - 120	102	80 - 120	<1.0	ug/L	0.72 (1)	20
A924870	Dissolved Beryllium (Be)	2023/03/31	93	80 - 120	98	80 - 120	<0.10	ug/L	NC (1)	20
A924870	Dissolved Bismuth (Bi)	2023/03/31	93	80 - 120	101	80 - 120	<1.0	ug/L	NC (1)	20
A924870	Dissolved Boron (B)	2023/03/31	95	80 - 120	101	80 - 120	<50	ug/L	1.7 (1)	20
A924870	Dissolved Cadmium (Cd)	2023/03/31	96	80 - 120	102	80 - 120	<0.010	ug/L	NC (1)	20
A924870	Dissolved Chromium (Cr)	2023/03/31	95	80 - 120	102	80 - 120	<1.0	ug/L	NC (1)	20
A924870	Dissolved Cobalt (Co)	2023/03/31	91	80 - 120	98	80 - 120	<0.20	ug/L	1.0 (1)	20
A924870	Dissolved Copper (Cu)	2023/03/31	89	80 - 120	98	80 - 120	<0.20	ug/L	3.9 (1)	20
A924870	Dissolved Iron (Fe)	2023/03/31	NC	80 - 120	105	80 - 120	<5.0	ug/L	0.37 (1)	20
A924870	Dissolved Lead (Pb)	2023/03/31	93	80 - 120	100	80 - 120	<0.20	ug/L	NC (1)	20
A924870	Dissolved Lithium (Li)	2023/03/31	89	80 - 120	95	80 - 120	<2.0	ug/L	4.8 (1)	20
A924870	Dissolved Manganese (Mn)	2023/03/31	NC	80 - 120	102	80 - 120	<1.0	ug/L	0.21 (1)	20
A924870	Dissolved Molybdenum (Mo)	2023/03/31	101	80 - 120	107	80 - 120	<1.0	ug/L	1.6 (1)	20
A924870	Dissolved Nickel (Ni)	2023/03/31	94	80 - 120	101	80 - 120	<1.0	ug/L	1.1 (1)	20
A924870	Dissolved Phosphorus (P)	2023/03/31	106	80 - 120	104	80 - 120	<10	ug/L	3.9 (1)	20
A924870	Dissolved Selenium (Se)	2023/03/31	104	80 - 120	103	80 - 120	<0.10	ug/L	NC (1)	20
A924870	Dissolved Silicon (Si)	2023/03/31	NC	80 - 120	109	80 - 120	<100	ug/L	0.75 (1)	20
A924870	Dissolved Silver (Ag)	2023/03/31	96	80 - 120	103	80 - 120	<0.020	ug/L	NC (1)	20
A924870	Dissolved Strontium (Sr)	2023/03/31	NC	80 - 120	102	80 - 120	<1.0	ug/L	0.55 (1)	20
A924870	Dissolved Thallium (TI)	2023/03/31	96	80 - 120	102	80 - 120	<0.010	ug/L	NC (1)	20
A924870	Dissolved Tin (Sn)	2023/03/31	97	80 - 120	104	80 - 120	<5.0	ug/L	NC (1)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A924870	Dissolved Titanium (Ti)	2023/03/31	98	80 - 120	104	80 - 120	<5.0	ug/L	NC (1)	20
A924870	Dissolved Uranium (U)	2023/03/31	99	80 - 120	103	80 - 120	<0.10	ug/L	3.4 (1)	20
A924870	Dissolved Vanadium (V)	2023/03/31	97	80 - 120	102	80 - 120	<5.0	ug/L	NC (1)	20
A924870	Dissolved Zinc (Zn)	2023/03/31	NC	80 - 120	105	80 - 120	<5.0	ug/L	0.94 (1)	20
A924870	Dissolved Zirconium (Zr)	2023/03/31	99	80 - 120	104	80 - 120	<0.10	ug/L	8.3 (1)	20
A925066	Chemical Oxygen Demand	2023/04/01	NC	80 - 120	99	80 - 120	<10	mg/L	1.0 (1)	20
A925432	Conductivity	2023/03/31			102	80 - 120	<2.0	uS/cm		
A925434	Alkalinity (PP as CaCO3)	2023/03/31					<1.0	mg/L	NC (1)	20
A925434	Alkalinity (Total as CaCO3)	2023/03/31	NC	80 - 120	91	80 - 120	<1.0	mg/L	0.96 (1)	20
A925434	Bicarbonate (HCO3)	2023/03/31					<1.0	mg/L	0.96 (1)	20
A925434	Carbonate (CO3)	2023/03/31					<1.0	mg/L	NC (1)	20
A925434	Hydroxide (OH)	2023/03/31					<1.0	mg/L	NC (1)	20
A925471	Nitrate plus Nitrite (N)	2023/03/31	NC	80 - 120	104	80 - 120	<0.020	mg/L	0.51 (1)	25
A925477	Nitrite (N)	2023/03/31	97	80 - 120	98	80 - 120	<0.0050	mg/L	NC (1)	20
A925528	Chloride (CI)	2023/03/31	104	80 - 120	99	80 - 120	<1.0	mg/L	1.5 (1)	20
A925528	Sulphate (SO4)	2023/03/31	NC	80 - 120	100	80 - 120	<1.0	mg/L	1.4 (1)	20
A925542	Total Ammonia (N)	2023/03/31	107	80 - 120	104	80 - 120	<0.015	mg/L	2.3 (1)	20
A926674	Total Sulphide	2023/04/04	85	80 - 120	81	80 - 120	<0.0018	mg/L	8.0 (1)	20
A926714	Total Aluminum (AI)	2023/04/04	102	80 - 120	102	80 - 120	<3.0	ug/L	5.4 (1)	20
A926714	Total Antimony (Sb)	2023/04/04	103	80 - 120	101	80 - 120	<0.50	ug/L	NC (1)	20
A926714	Total Arsenic (As)	2023/04/04	106	80 - 120	101	80 - 120	<0.10	ug/L	3.6 (1)	20
A926714	Total Barium (Ba)	2023/04/04	98	80 - 120	99	80 - 120	<1.0	ug/L	0.60 (1)	20
A926714	Total Beryllium (Be)	2023/04/04	95	80 - 120	100	80 - 120	<0.10	ug/L	NC (1)	20
A926714	Total Bismuth (Bi)	2023/04/04	95	80 - 120	101	80 - 120	<1.0	ug/L	NC (1)	20
A926714	Total Boron (B)	2023/04/04	NC	80 - 120	110	80 - 120	<50	ug/L	1.0 (1)	20
A926714	Total Cadmium (Cd)	2023/04/04	95	80 - 120	100	80 - 120	<0.010	ug/L	NC (1)	20
A926714	Total Chromium (Cr)	2023/04/04	99	80 - 120	101	80 - 120	<1.0	ug/L	NC (1)	20
A926714	Total Cobalt (Co)	2023/04/04	92	80 - 120	94	80 - 120	<0.20	ug/L	3.7 (1)	20
A926714	Total Copper (Cu)	2023/04/04	93	80 - 120	96	80 - 120	<0.50	ug/L	2.3 (1)	20
A926714	Total Iron (Fe)	2023/04/04	113	80 - 120	114	80 - 120	<10	ug/L	NC (1)	20
A926714	Total Lead (Pb)	2023/04/04	93	80 - 120	99	80 - 120	<0.20	ug/L	NC (1)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A926714	Total Lithium (Li)	2023/04/04	89	80 - 120	96	80 - 120	<2.0	ug/L	4.5 (1)	20
A926714	Total Manganese (Mn)	2023/04/04	NC	80 - 120	101	80 - 120	<1.0	ug/L	4.5 (1)	20
A926714	Total Molybdenum (Mo)	2023/04/04	143 (3)	80 - 120	101	80 - 120	<1.0	ug/L	NC (1)	20
A926714	Total Nickel (Ni)	2023/04/04	92	80 - 120	99	80 - 120	<1.0	ug/L	NC (1)	20
A926714	Total Phosphorus (P)	2023/04/04	107	80 - 120	102	80 - 120	<10	ug/L	NC (1)	20
A926714	Total Selenium (Se)	2023/04/04	104	80 - 120	102	80 - 120	<0.10	ug/L	NC (1)	20
A926714	Total Silicon (Si)	2023/04/04	103	80 - 120	111	80 - 120	<100	ug/L	0.15 (1)	20
A926714	Total Silver (Ag)	2023/04/04	100	80 - 120	100	80 - 120	<0.020	ug/L	NC (1)	20
A926714	Total Strontium (Sr)	2023/04/04	NC	80 - 120	101	80 - 120	<1.0	ug/L	2.4 (1)	20
A926714	Total Thallium (TI)	2023/04/04	100	80 - 120	101	80 - 120	<0.010	ug/L	NC (1)	20
A926714	Total Tin (Sn)	2023/04/04	107	80 - 120	100	80 - 120	<5.0	ug/L	NC (1)	20
A926714	Total Titanium (Ti)	2023/04/04	108	80 - 120	100	80 - 120	<5.0	ug/L	NC (1)	20
A926714	Total Uranium (U)	2023/04/04	99	80 - 120	102	80 - 120	<0.10	ug/L	NC (1)	20
A926714	Total Vanadium (V)	2023/04/04	104	80 - 120	101	80 - 120	<5.0	ug/L	NC (1)	20
A926714	Total Zinc (Zn)	2023/04/04	89	80 - 120	102	80 - 120	<5.0	ug/L	NC (1)	20
A926714	Total Zirconium (Zr)	2023/04/04	96	80 - 120	101	80 - 120	<0.10	ug/L	NC (1)	20
A926922	Total Dissolved Solids	2023/04/04	98	80 - 120	102	80 - 120	<10	mg/L	5.7 (1)	20
A927497	Dissolved Mercury (Hg)	2023/04/04	95	80 - 120	100	80 - 120	< 0.0019	ug/L	NC (1)	20
A927551	Total Mercury (Hg)	2023/04/04	95	80 - 120	96	80 - 120	<0.0019	ug/L	NC (1)	20
A927556	Total Suspended Solids	2023/04/05	103	80 - 120	103	80 - 120	<1.0	mg/L	NC (1)	20
A927637	1-Methylnaphthalene	2023/04/04			91	50 - 140	<0.050	ug/L		
A927637	2-Methylnaphthalene	2023/04/04			87	50 - 140	<0.10	ug/L		
A927637	Acenaphthene	2023/04/04			91	50 - 140	<0.050	ug/L		
A927637	Acenaphthylene	2023/04/04			89	50 - 140	<0.050	ug/L		
A927637	Acridine	2023/04/04			98	50 - 140	<0.050	ug/L		
A927637	Anthracene	2023/04/04			96	50 - 140	<0.010	ug/L		
A927637	Benzo(a)anthracene	2023/04/04			94	50 - 140	<0.010	ug/L		
A927637	Benzo(a)pyrene	2023/04/04			95	50 - 140	<0.0050	ug/L		
A927637	Benzo(b&j)fluoranthene	2023/04/04			94	50 - 140	<0.030	ug/L		
A927637	Benzo(g,h,i)perylene	2023/04/04			89	50 - 140	<0.050	ug/L		
A927637	Benzo(k)fluoranthene	2023/04/04			99	50 - 140	<0.050	ug/L		

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A927637	Chrysene	2023/04/04			98	50 - 140	<0.020	ug/L		
A927637	Dibenz(a,h)anthracene	2023/04/04			90	50 - 140	<0.0030	ug/L		
A927637	Fluoranthene	2023/04/04			85	50 - 140	<0.020	ug/L		
A927637	Fluorene	2023/04/04			89	50 - 140	<0.050	ug/L		
A927637	Indeno(1,2,3-cd)pyrene	2023/04/04			92	50 - 140	<0.050	ug/L		
A927637	Naphthalene	2023/04/04			88	50 - 140	<0.10	ug/L		
A927637	Phenanthrene	2023/04/04			87	50 - 140	<0.050	ug/L		
A927637	Pyrene	2023/04/04			84	50 - 140	<0.020	ug/L		
A927637	Quinoline	2023/04/04			107	50 - 140	<0.020	ug/L		
A927641	EPH (C10-C19)	2023/04/04			86	70 - 130	<0.20	mg/L		
A927641	EPH (C19-C32)	2023/04/04			108	70 - 130	<0.20	mg/L		
A927966	Dissolved Calcium (Ca)	2023/04/04	NC (4)	80 - 120	99	80 - 120	<0.050	mg/L		
A927966	Dissolved Magnesium (Mg)	2023/04/04	NC (4)	80 - 120	91	80 - 120	<0.050	mg/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Duplicate Parent ID [BOG483-09]
- (3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (4) Matrix Spike Parent ID [BOG483-03]

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

VALIDATION SIGNATURE PAGE

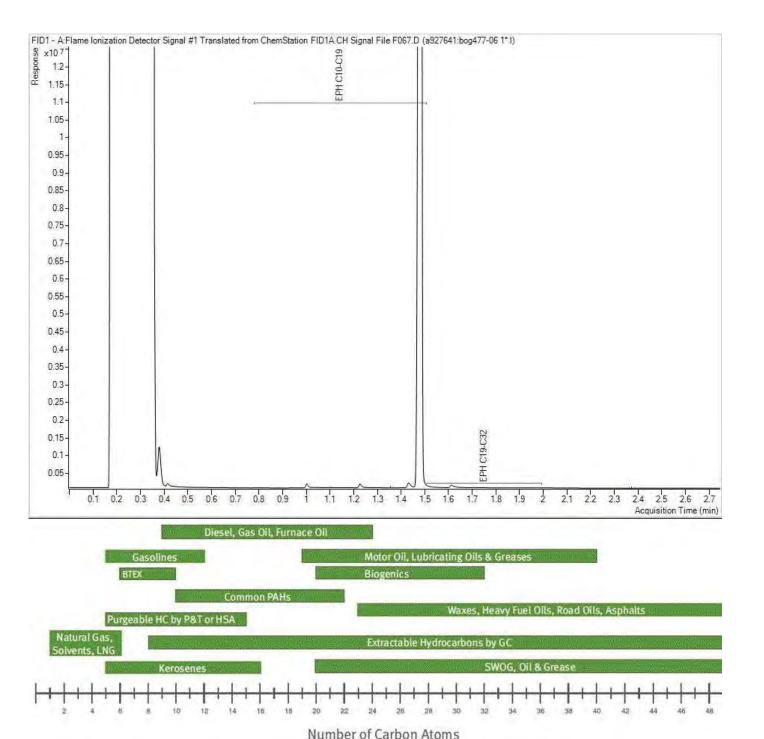
The analytical data and all QC contained in this report were reviewed and validated by:

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Saya Hatton, Sample Logistics – PSS

Automated Statchk

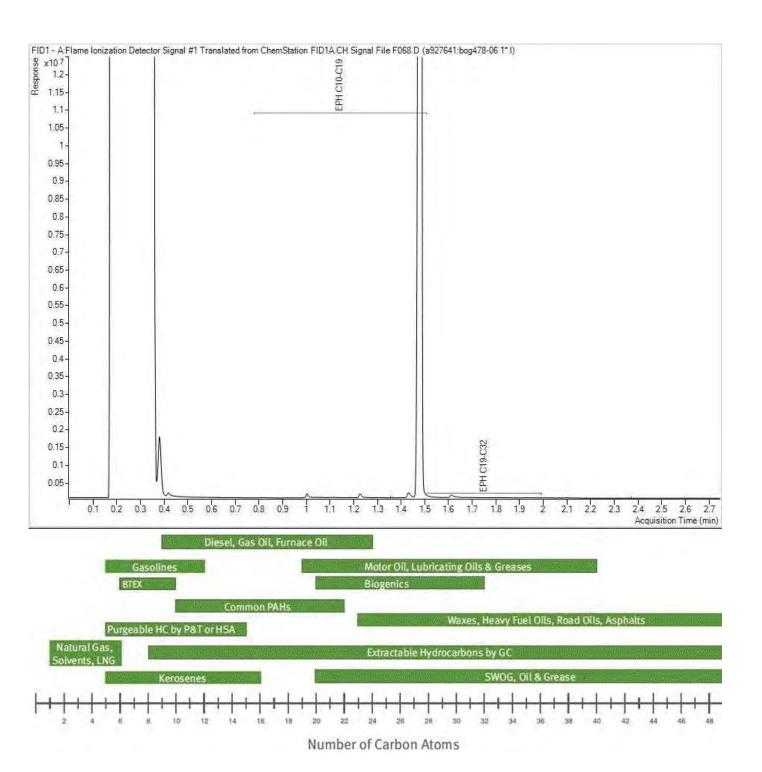
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.


WAW	5				00 00																1/2
	#163 GHD Li	INVOICE TO:	_			Report Inf		m	_		-		_	-	formation		_	_	Dureau Verites	aboratory Use O	to the same of the
party Nam arz Name	AP Invoices -			Company Ne Contact Name		Limit	60	_		_		Suplation #		735-0026	40.3	_	_		Durass Verses	200 #	Bottle Order #:
908 908	455 PHILLIP S			Address		me he	rton	@ oh	d - co	m		Project #		1122268	and the same of th						689991
	WATERLOO (0.000	-Koth/c	in has	erp	and.	com			Project Name	0	UPIQI	Id-N	mlar	14911		Chain Of Custody	y Record	Project Manager
•	(519) 884-0510		1394	Phone	YOSEYO O	rie - roc	cme	A)JI	1.com	n	-	the #		Groundw	2111	ntiam	-	-	E COMMENDATION	BERTHANNESS .	Brody Anderson
g,/atory		municing-co		f(ma) f(m) Species		USupport	Similar Similar	ouph ca	stepha		addiction.	constants	PREASE D	KOHN		MG.		1	Cettesos1-01	nd Time (TAT) Reg	rient .
	Crowns.		31101-00	METAIS	rayyoona		1 1			7	·	T T		-		\neg		100000		ixivance notice for nue	
cen			Allh	ottles u	wir allen	n	ш	e		ll	Calc		ty, dis. not)	3	PAHs	l		Regular (S	Itandard) TAT:		
CCM	t		ac m	nured.	vere fillen	-0	П	NO3.		1	H2S) (200	Res	å b			(MIZ DE ASS	plod if Rush TAT is not a	specified):	
BCW	teler Quelity		03.10	4			2	02			ž.		585	E.	poted				TAT = 5-7 Working days		7
otw							2 (Y/N)	SO4, NO2,		22	SE P		53	\$	经			Plause not days - cont	te: Sitenaturd TAT for cert teat your Phajest Minney	tein leuts such as 600 or für dideits.	and Dioxina/Furairs are
1 0000								S S	E.	0.00	pezuo	(g	fetals with chistograms	spijos pa	€ 6		8	Job Spec	itis Rush TAT (If applie	es to entire subméssi	on)
							2	ž	\$	¥28	5	N (Total)	Moto	§	報		9.0	1 DAY	2 Day 30	Date Requi	ed
SAME	LES MUST BE KERT O	DOL (< 10°C) FROM TWE OF SAMPL	ING INTH AD	ACTIVITATION	BEAGNESSTA.		2	Pop	ciated	8=	8	100	P 55	Desc.	PANIETY IN	£	emp	Rush Con	fenution Number:		
alayer y					MEAU YEJETAS		8	2 -		Suphid	Sulphi	- GE	Secon	3	LEPHOH (MC).	Field	L Die	Fot Bottes		Converts	Flab for #)
Sarr	ple Barcode Label	Sample (Location) identification	Date	Samplet	Time Sampled	Motrix	12	3ž	8	82	65	4	음문	2	35	Œ	ű.			6000	
	พล	1122680 - 280323-	85 YOHX	103123	1300	W	14	X	X	X	\times	\times	X	X	×						
						1	Y	X	V	X	×	X	×	X	X				T	1000	
-	WQ-I	222680-280323-K	n-04 Z	RIDSIE	1410	W	+',+			1	4	K	1	2	1	_	-		—	2	
	- WG-	1222680-280323-KH	-04 2	8103/23	1845	W	17	\times	X	1		1	X	X	\sim					0 7 5 2 5	
	MIG -	11227.680 - 280323 -	MUNK :	28103/23	1745	1.1	V	X	×	X	×	X	X	×	\prec					7	
	- Med	HELLOOU COULD	alor i	Colules	1743	VV	++	4	/	1	/\	+	1		-				-	8	
							Н				- 20	_								n (2000)	-
																				1	
							t		-					\Box				1		2000	-
			_				\perp							\perp	_			-		0.00	-
							ш					1		- 1						2020	. 1
							П													10000000	
_			-				11		-			-		\vdash	-	_		-			
COLL C	en Husler		Mar (YYMMOO	-	n 116	pfcu	NED BY	Bignatu	restrict)	-1		Date: (YVI)		Time	# jars	used end ubsolited				Use Only	
WW.X	MI HUNET	23	103/2	8 000	CHARLES.	UN C	COL.	BRE	0	Oile	12	013/0	1500	0824	-		Tente	l il	penture (°C) on Peorly	Party Company	tion totact on Cooker?
	THE PARTY ASSESSED NO.	IN WINTING, WORK SUBMITTED ON THE	2010 05 000	TOWN 0 5000	~		name v	emac and	. commerci	Dank Subana	0.04.00	of Cubin Cu	CHITCHY	DOCUMENT	******		T 4400 440	T of	111		nay Verber Yorkov Chi

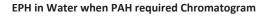
		INVOICE TO:											Project in	farmatica.		-	Laboration	2/2
	#163 GHD Li	The state of the s	-		CAN I	Report info	rmston		_	-			C30090	polaracion		_	Laboratory Bureau Veritas Job #	Bottle Order #:
pany Niene lad Name	AP Invoices -	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED		Company Na Contact Nam	-	lerton	_		_		Quotation #		735-0026	40-3	. v	-	Dizeas Village 200 F	
936	455 PHILLIP S			Address	Skondinie	herto.	near	nd.com			Project #		11222680	1-15.7 NO	M			1 H 1 H 1 H 1 H 1
	WATERLOO		1501		Kamie	n · mas	ier io	and.	m)		Project Name	8	Union	M lands	11	_	Chain Of Custody Record	Project Manage
4	(519) 884-051 AF involces 73	THE DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO	-1394 -1394	Phone	Kathira Kathira Kosemar NationalEDI	12 - 100	cally	hid-con)	n@a	tine #		Ledchate		100	\rightarrow	TE CONTROLLO DE CONTROL DE CONTRO	Brody Anderson
	The second second	ocand com involving-			NationalEU	Support	smaxxa g	, ca, stepn			Sampled By	O FARE E	E SPECIFICI	pean Has	M.	_	Calstigge 4-01-01 Turneround Time (TA	T) Required
guiatory Cr	teru.		ghd- a	Jii) 09401	neyuctions.	_	\vdash	70	T	L FOIG RE	T I	LEAGE	T T		1	-	Fixan provide advance noce	4 4
CSR			disso	wed ford	nosa bottes		1 100	2		5	1 1			PANE		Recular	(Standard) TAT:	
COME			GAL F	swood a	ness bottles s required		NO2, NO3,	6 8		2	2		1 1	A P			upplied if Rush TAT is not specified):	1
1 ecwe	er Quelty		neil ,	into co. c.	s redui		2 8	S S	1	ž	Demand			8		Standard	t TAT = 5-7 Working days for most tests	
1	or seasonly						SO4, NO	2	1	£	8		1 a 1	5		Please no	iole: Standard TAT for certain tests such ontact your Project Manager for details.	as 500 and DissinsFutane as
Other			1				SO4.	Total d on	8	with CV Hg (NO Abia)	Oxygen		8	. F.	1 8		ecific Rush TAT (if applies to entire s	ubmission)
			7.55				Metals Field Fitlered Conductivity, Cl. S	9 8	-N (Total)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Dissolved Hardness	LEPHINEPH WITH SUBST	i di	1 DAY		e Required.
July.			12.77				Day of	3 H	1 %	Total Metals w HARDNESS)	-in		8	T PSE	I &	Ruth Co	orfirmation Number:	
SAMPL	ES MUST BE KKPT (OOL (< 10°C) FROM TWE OF SAMP	LING UNTIL D	CLIVERY TO BE	REAU VERITAS		1 9	Sulp HZS)	ě	2 S	Rochem	٥	8	md feel ph	22	# of Bottle		(colf leb for #)
Sample	e Blarcode Label	Sample (Locution) Identification	Ds	ne Sumpled	Yime Sampled	Matrix	2 0:	Total (as H	- A	\$ 4	8.4	000	8	3 E	Field	a ca gome		eners.
	w/i - 1	222680-280323-X	H.	20100122	1600	W	\Box	<	1><	$1 \times$		×	X	~				
_	VVC I	CONSTO CONSTRAIN		CAKING	1600	1/0	1	1			1			-	+	-		
			-02														6000	
	hell -	11222680 - 280323	VILA	261/2122	1550	W	$ \rangle$	X	X	X	X	×	X	×			and the same	
	VI.L.	HECCOSO CROSES.	HILDI	colmics	1220	- VV	1	1/1	1/1	1		1	/ \	_	+	+	- 25	
											1						2000	
		**															250	
_			_		_		-	_	-	-	_		\rightarrow	_	+	+	- 300 S	
													1					
																5	162167	
			-				-	-	-	-	-		+	_	+-		322057	
																	8	
				111111111111														-0.1
			_	_			-	+	-	_	-		-	_	+	+		
	ni Mandal Maintanana and an ann					-												
	QUISHED BY: (Signal		10312		Mo	Pyter	dela	nature/Print)	7		Dete: (YYN	MOCH C	0827	# jars used a not submits	nd d Time S	and T	Lab Use Only	Daniedy Steal Intest on Cooker?
· RfLis	DOON HO						CIF SEEL	10 /	10000		UV50	V 20	(17) 1-1	5 CONTROL OF THE	CO. LANSING	Te.	emperature (°C) on Receipt	remove over ment on Cooker

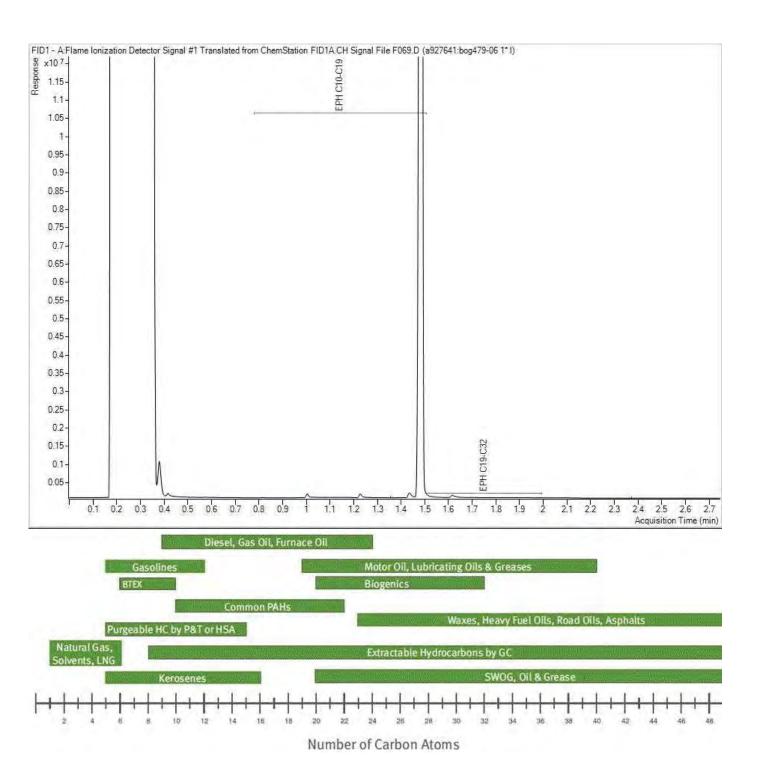
GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-280323-KH-01


EPH in Water when PAH required Chromatogram

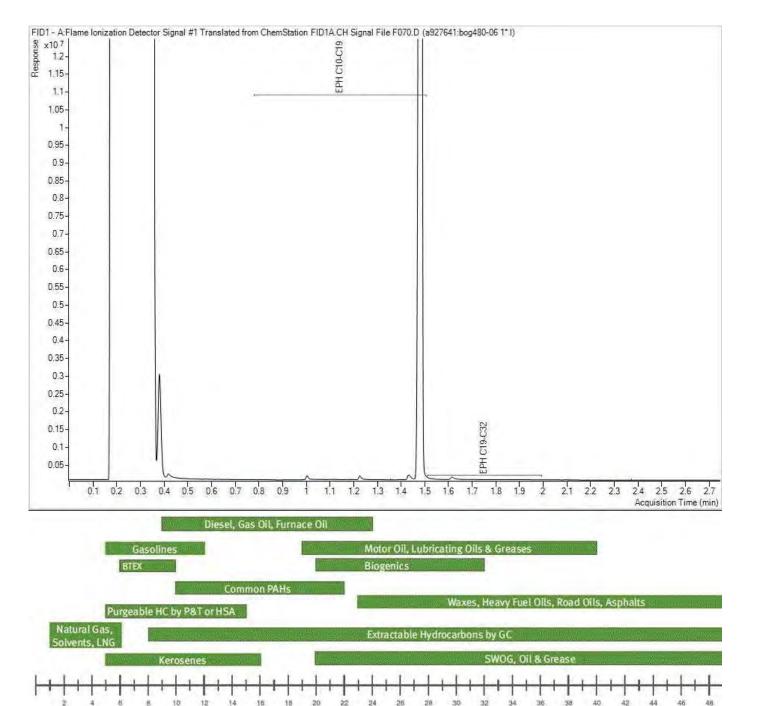
GHD Limited


Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-280323-KH-02


EPH in Water when PAH required Chromatogram

GHD Limited

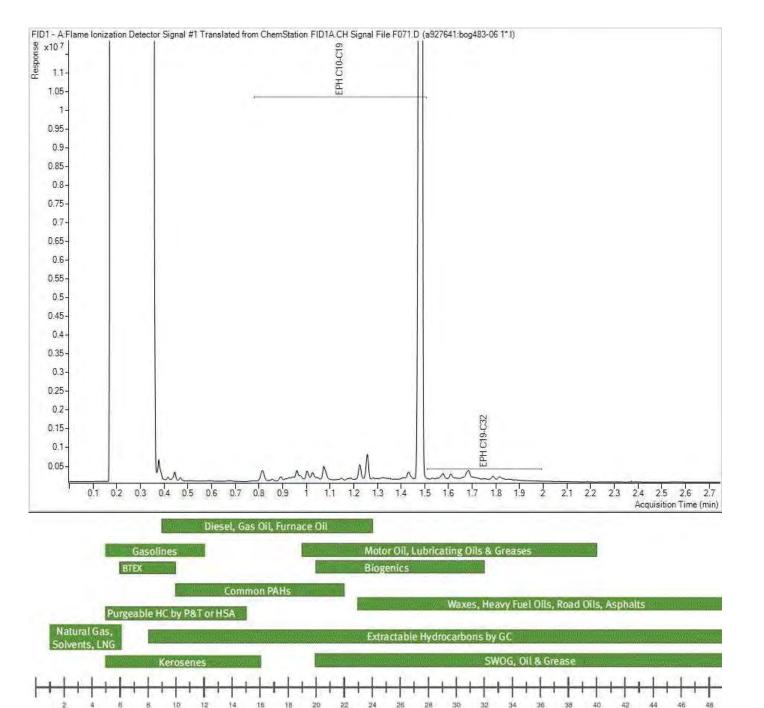
Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-280323-KH-04



GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-280323-KH-03

EPH in Water when PAH required Chromatogram

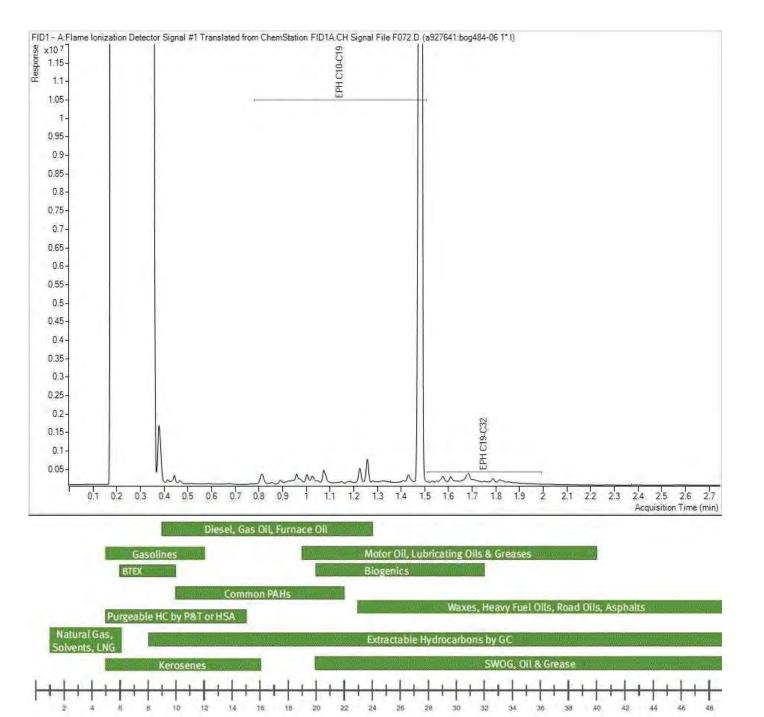


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WL-11222680-280323-KH-02

EPH in Water when PAH required Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WL-11222680-280323-KH-01

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL Your C.O.C. #: 689991-03-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/04/12

Report #: R3321133 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C322498 Received: 2023/03/31, 14:06

Sample Matrix: Water # Samples Received: 6

Date Date **Analyses Quantity Extracted** Analyzed **Laboratory Method Analytical Method** Alkalinity @25C (pp, total), CO3,HCO3,OH 6 N/A 2023/04/03 BBY6SOP-00026 SM 23 2320 B m Chloride/Sulphate by Auto Colourimetry 6 N/A 2023/04/03 BBY6SOP-00011 / SM23-4500-CI/SO4-E m BBY6SOP-00017 Conductivity @25C 6 N/A 2023/04/03 BBY6SOP-00026 SM 23 2510 B m 6 N/A 2023/04/04 Sulphide (as H2S) (1) Auto Calc Un-ionized Hydrogen Sulphide as S Calc 6 N/A 2023/04/04 BBY WI-00033 Auto Calc Hardness (calculated as CaCO3) 6 N/A 2023/04/04 BBY WI-00033 Auto Calc 6 2023/04/04 2023/04/04 AB SOP-00084 Mercury (Dissolved) by CV (2) BCMOE BCLM Oct2013 m EPH in Water when PAH required 6 2023/04/04 2023/04/04 BBY8SOP-00029 BCMOE BCLM Sep2017 m Na, K, Ca, Mg, S by CRC ICPMS (diss.) 6 N/A 2023/04/04 BBY WI-00033 Auto Calc Elements by CRC ICPMS (dissolved) (2) 6 N/A 2023/04/03 BBY7SOP-00002 EPA 6020b R2 m 6 Ammonia-N (Total) N/A 2023/04/03 AB SOP-00007 SM 23 4500 NH3 A G m Nitrate + Nitrite (N) 6 N/A 2023/04/01 BBY6SOP-00010 SM 23 4500-NO3-I m Nitrite (N) by CFA 6 N/A 2023/04/01 BBY6SOP-00010 SM 23 4500-NO3-I m 6 Nitrogen - Nitrate (as N) N/A 2023/04/03 BBY WI-00033 Auto Calc PAH in Water by GC/MS (SIM) 2 2023/04/04 2023/04/04 BBY8SOP-00021 BCMOE BCLM Jul2017m PAH in Water by GC/MS (SIM) 4 2023/04/04 2023/04/05 BBY8SOP-00021 BCMOE BCLM Jul2017m Total LMW, HMW, Total PAH Calc (3) 6 N/A 2023/04/05 BBY WI-00033 Auto Calc Filter and HNO3 Preserve for Metals 6 N/A 2023/04/01 BBY7 WI-00004 SM 23 3030B m Orthophosphate by Konelab (4) 6 N/A 2023/04/01 BBY6SOP-00013 SM 23 4500-P E m Total Sulphide (1) 6 N/A 2023/04/04 AB SOP-00080 SM 23 4500 S2-A D Fm Total Dissolved Solids (Filt. Residue) 6 2023/04/03 2023/04/04 BBY6SOP-00033 SM 23 2540 C m EPH less PAH in Water by GC/FID (5) 6 2023/04/05 BBY WI-00033 N/A Auto Calc

Remarks:

Field Temperature

Field pH

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

N/A

N/A

2023/04/03

2023/04/03

5

5

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2 Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL Your C.O.C. #: 689991-03-01

Report Date: 2023/04/12

Report #: R3321133 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C322498

Received: 2023/03/31, 14:06

reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St. , Calgary, AB, T2E 6P8
- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (4) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (5) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Encryption Key

Brody Andersen Program Specialist-Emergency Spill Response

Response 12 Apr 2023 11:41:07

Please direct all questions regarding this Certificate of Analysis to:

Brody Andersen, B.Sc., B.Sc., Program Specialist–Emergency Spill Response

Email: Brody.Andersen@bureauveritas.com

Phone# (780)577-7120

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BOI518	BOI518	BOI519	BOI520		
Compline Date		2023/03/29	2023/03/29	2023/03/29	2023/03/29		
Sampling Date		10:45	10:45	10:55	13:45		
COC Number		689991-03-01	689991-03-01	689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323 -KH-05	WG-11222680-290323 -KH-05 Lab-Dup	WG-11222680-290323 -KH-06	WG-11222680-290323 -KH-07	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	N/A	<0.0050	<0.0050	0.0050	A925902
Calculated Parameters							
Filter and HNO3 Preservation	N/A	FIELD	N/A	FIELD	FIELD	N/A	ONSITE
Nitrate (N)	mg/L	0.700	N/A	0.699	0.408	0.020	A925845
Sulphide (as H2S)	mg/L	<0.0020	N/A	<0.0020	0.0023	0.0020	A925610
Field Parameters							
Field pH	рН	7.56	N/A	7.56	7.67	N/A	ONSITE
Field Temperature	°C	10.37	N/A	10.37	16.54	N/A	ONSITE
Misc. Inorganics							
Conductivity	uS/cm	150	N/A	150	210	2.0	A927157
Total Dissolved Solids	mg/L	130	N/A	100	140	10	A926922
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	N/A	<1.0	<1.0	1.0	A927158
Alkalinity (Total as CaCO3)	mg/L	66	N/A	65	90	1.0	A927158
Bicarbonate (HCO3)	mg/L	80	N/A	80	110	1.0	A927158
Carbonate (CO3)	mg/L	<1.0	N/A	<1.0	<1.0	1.0	A927158
Hydroxide (OH)	mg/L	<1.0	N/A	<1.0	<1.0	1.0	A927158
Total Sulphide	mg/L	<0.0018	N/A	<0.0018	0.0022	0.0018	A927544
Chloride (CI)	mg/L	2.3	N/A	2.3	6.2	1.0	A927135
Sulphate (SO4)	mg/L	4.4	N/A	4.4	6.3	1.0	A927135
Nutrients			•				·
Total Ammonia (N)	mg/L	<0.015	<0.015	<0.015	<0.015	0.015	A927155
Orthophosphate (P)	mg/L	0.0049	0.0050	0.0054	0.011	0.0030	A925886
Nitrate plus Nitrite (N)	mg/L	0.700	N/A	0.699	0.408	0.020	A925901

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BOI521	BOI522	BOI523		
Sampling Date		2023/03/29 13:20	2023/03/29 16:00	2023/03/29 17:00		
COC Number		689991-03-01	689991-03-01	689991-03-01		
COC Number			WG-11222680-290323			
	UNITS	-KH-08	-KH-09	-KH-10	RDL	QC Batch
ANIONS						
Nitrite (N)	mg/L	<0.0050	0.0166	<0.0050	0.0050	A925902
Calculated Parameters						
Filter and HNO3 Preservation	N/A	FIELD	FIELD	FIELD	N/A	ONSITE
Nitrate (N)	mg/L	<0.020	1.17	0.680	0.020	A925845
Sulphide (as H2S)	mg/L	<0.0020	<0.0020	0.034	0.0020	A925610
Field Parameters						
Field pH	рН	N/A	7.65	7.09	N/A	ONSITE
Field Temperature	°C	N/A	12.33	10.58	N/A	ONSITE
Misc. Inorganics						
Conductivity	uS/cm	<2.0	200	530	2.0	A927157
Total Dissolved Solids	mg/L	<10	100	340	10	A926922
Anions						
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	1.0	A927158
Alkalinity (Total as CaCO3)	mg/L	<1.0	77	120	1.0	A927158
Bicarbonate (HCO3)	mg/L	<1.0	94	150	1.0	A927158
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	1.0	A927158
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	1.0	A927158
Total Sulphide	mg/L	<0.0018	<0.0018	0.032	0.0018	A927544
Chloride (CI)	mg/L	<1.0	6.0	84	1.0	A927135
Sulphate (SO4)	mg/L	<1.0	7.2	5.1	1.0	A927135
Nutrients	•	•	•	•		
Total Ammonia (N)	mg/L	<0.015	<0.015	<0.015	0.015	A927155
Orthophosphate (P)	mg/L	<0.0030	0.010	0.0069	0.0030	A925886
Nitrate plus Nitrite (N)	mg/L	<0.020	1.19	0.680	0.020	A925901
RDL = Reportable Detection Lir	nit					
N/A = Not Applicable						

N/A = Not Applicable

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

MISCELLANEOUS (WATER)

Bureau Veritas ID		BOI518	BOI519	BOI520		
Samuling Date		2023/03/29	2023/03/29	2023/03/29		
Sampling Date		10:45	10:55	13:45		
COC Number		689991-03-01	689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323	WG-11222680-290323	WG-11222680-290323	BDI	OC Botole
	UNITS	-KH-05	-KH-06	-KH-07	RDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	A925844
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	A925844
RDL = Reportable Detection Limit	•	•				
Bureau Veritas ID		BOI521	BOI522	BOI523		
Committee Date		2023/03/29	2023/03/29	2023/03/29		
Sampling Date		13:20	16:00	17:00		
COC Number		689991-03-01	689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323	WG-11222680-290323	WG-11222680-290323	RDL	QC Batch
	UNITS	-KH-08	-KH-09	-KH-10	KDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	NA	<0.0050	0.017	0.0050	A925844
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	NA	<0.0050	0.018	0.0050	A925844
RDL = Reportable Detection Limit	•	•	•	•		

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOI518	BOI519	BOI520	BOI521		
		2023/03/29	2023/03/29	2023/03/29	2023/03/29		
Sampling Date		10:45	10:55	13:45	13:20		
COC Number		689991-03-01	689991-03-01	689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323 -KH-05	WG-11222680-290323 -KH-06	WG-11222680-290323 -KH-07	WG-11222680-290323 -KH-08	RDL	QC Batch
Calculated Parameters							
Low Molecular Weight PAH`s	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A925710
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A925710
Total PAH	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A925710
Polycyclic Aromatics	•						•
Quinoline	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A927637
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
2-Methylnaphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A927637
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	A927637
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	A927637
Chrysene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A927637
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	A927637
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A927637
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	A927637
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	A927637
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A925708
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A925708
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A927641
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	A927641
RDL = Reportable Detection Lin	nit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOI518	BOI519	BOI520	BOI521		
Sampling Date		2023/03/29	2023/03/29	2023/03/29	2023/03/29		
		10:45	10:55	13:45	13:20		
COC Number		689991-03-01	689991-03-01	689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323 -KH-05	WG-11222680-290323 -KH-06	WG-11222680-290323 -KH-07	WG-11222680-290323 -KH-08	RDL	QC Batch
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	101	100	100	101	N/A	A927641
D10-ANTHRACENE (sur.)	%	103	100	100	102	N/A	A927637
D8-ACENAPHTHYLENE (sur.)	%	91	89	88	90	N/A	A927637
D8-NAPHTHALENE (sur.)	%	83	81	80	83	N/A	A927637
TERPHENYL-D14 (sur.)	%	87	86	86	88	N/A	A927637

RDL = Reportable Detection Limit

N/A = Not Applicable

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOI522	BOI523		
Sampling Date		2023/03/29	2023/03/29		
Jamping Date		16:00	17:00		
COC Number		689991-03-01			
	UNITS	WG-11222680-290323		RDL	QC Batch
		-KH-09	-KH-10		40 2000
Calculated Parameters					
Low Molecular Weight PAH`s	ug/L	<0.10	0.26	0.10	A925710
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	0.050	A925710
Total PAH	ug/L	<0.10	0.28	0.10	A925710
Polycyclic Aromatics	•	•	•	•	•
Quinoline	ug/L	<0.020	<0.020	0.020	A927637
Naphthalene	ug/L	<0.10	0.15	0.10	A927637
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	A927637
2-Methylnaphthalene	ug/L	<0.10	0.11	0.10	A927637
Acenaphthylene	ug/L	<0.050	<0.050	0.050	A927637
Acenaphthene	ug/L	<0.050	<0.050	0.050	A927637
Fluorene	ug/L	<0.050	<0.050	0.050	A927637
Phenanthrene	ug/L	<0.050	<0.050	0.050	A927637
Anthracene	ug/L	<0.010	<0.010	0.010	A927637
Acridine	ug/L	<0.050	<0.050	0.050	A927637
Fluoranthene	ug/L	<0.020	<0.020	0.020	A927637
Pyrene	ug/L	<0.020	0.021	0.020	A927637
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	A927637
Chrysene	ug/L	<0.020	<0.020	0.020	A927637
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	0.030	A927637
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	A927637
Benzo(a)pyrene	ug/L	<0.0050	0.0062	0.0050	A927637
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	A927637
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	0.0030	A927637
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	A927637
Calculated Parameters					
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	0.20	A925708
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	0.20	A925708
Ext. Pet. Hydrocarbon					
EPH (C10-C19)	mg/L	<0.20	<0.20	0.20	A927641
EPH (C19-C32)	mg/L	<0.20	<0.20	0.20	A927641
RDL = Reportable Detection Lir	nit			•	

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BOI522	BOI523		
Sampling Data		2023/03/29	2023/03/29		
Sampling Date		16:00	17:00		
COC Number		689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323	WG-11222680-290323	RDL	QC Batch
	UNITS	-KH-09	-KH-10	KDL	QC Batch
Surrogate Recovery (%)					
O-TERPHENYL (sur.)	%	99	99	N/A	A927641
D10-ANTHRACENE (sur.)	%	105	100	N/A	A927637
D8-ACENAPHTHYLENE (sur.)	%	91	89	N/A	A927637
D8-NAPHTHALENE (sur.)	%	84	83	N/A	A927637
TERPHENYL-D14 (sur.)	%	89	88	N/A	A927637
RDL = Reportable Detection Li	mit	•			•

N/A = Not Applicable

reau Veritas Job #: C322498 GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Burger Verites ID		DOIE10	DOIE40	DOI:30	DOIE34		
Bureau Veritas ID		BOI518	BOI519	BOI520	BOI521		
Sampling Date		2023/03/29 10:45	2023/03/29 10:55	2023/03/29 13:45	2023/03/29 13:20		
COC Number		689991-03-01	689991-03-01	689991-03-01	689991-03-01		
COC Nulliber							
	UNITS	-KH-05	-KH-06	-KH-07	-KH-08	RDL	QC Batch
Calculated Parameters							<u>I</u>
Dissolved Hardness (CaCO3)	mg/L	65.3	65.3	95.1	0.77	0.50	A925748
Elements	IIIg/L	05.5	03.3	93.1	0.77	0.30	A323746
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	<0.0019	<0.0019	0.0019	A927497
Dissolved Metals by ICPMS	ug/L	\0.0013	\0.0013	\0.0013	\0.0019	0.0013	A327437
Dissolved Aluminum (Al)	ug/L	11.4	<3.0	<3.0	<3.0	3.0	A925968
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	A925968
Dissolved Arsenic (As)	ug/L	0.24	<0.10	0.25	<0.10	0.10	A925968
Dissolved Barium (Ba)	ug/L	3.5	3.1	5.7	<1.0	1.0	A925968
Dissolved Beryllium (Be)	ug/L	0.19	0.12	<0.10	<0.10	0.10	A925968
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A925968
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	A925968
Dissolved Cadmium (Cd)	ug/L	0.167	<0.010	<0.010	0.011	0.010	A925968
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A925968
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	A925968
Dissolved Copper (Cu)	ug/L	2.17	<0.20	0.53	<0.20	0.20	A925968
Dissolved Iron (Fe)	ug/L	24.1	11.5	<5.0	17.0	5.0	A925968
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	A925968
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	A925968
Dissolved Manganese (Mn)	ug/L	9.6	5.8	<1.0	<1.0	1.0	A925968
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A925968
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	A925968
Dissolved Phosphorus (P)	ug/L	31	<10	15	<10	10	A925968
Dissolved Selenium (Se)	ug/L	0.28	0.18	0.20	0.12	0.10	A925968
Dissolved Silicon (Si)	ug/L	7630	7690	8900	<100	100	A925968
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	A925968
Dissolved Strontium (Sr)	ug/L	32.4	27.5	45.2	<1.0	1.0	A925968
Dissolved Thallium (TI)	ug/L	0.032	<0.010	<0.010	<0.010	0.010	A925968
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A925968
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A925968
Dissolved Uranium (U)	ug/L	0.16	<0.10	<0.10	<0.10	0.10	A925968
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A925968
RDL = Reportable Detection Lir	nit					_	
<u> </u>							

Bureau Veritas Job #: C322498 GHD Li
Report Date: 2023/04/12 Client F

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Bureau Veritas ID		BOI518	BOI519	BOI520	BOI521		
Sampling Date		2023/03/29	2023/03/29	2023/03/29	2023/03/29		
Sampling Date		10:45	10:55	13:45	13:20		
COC Number		689991-03-01	689991-03-01	689991-03-01	689991-03-01		
	UNITS	WG-11222680-290323 -KH-05	WG-11222680-290323 -KH-06	WG-11222680-290323 -KH-07	WG-11222680-290323 -KH-08	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	A925968
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	A925968
Dissolved Calcium (Ca)	mg/L	20.4	20.3	30.2	0.310	0.050	A925749
Dissolved Magnesium (Mg)	mg/L	3.47	3.53	4.77	<0.050	0.050	A925749
Dissolved Potassium (K)	mg/L	0.326	0.275	0.392	<0.050	0.050	A925749
Dissolved Sodium (Na)	mg/L	5.22	5.03	5.67	<0.050	0.050	A925749
Dissolved Sulphur (S)	mg/L	<3.0	<3.0	<3.0	<3.0	3.0	A925749
RDL = Reportable Detection Li	mit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Bureau Veritas ID		BOI522		BOI523		
Committee Date		2023/03/29		2023/03/29		
Sampling Date		16:00		17:00		
COC Number		689991-03-01		689991-03-01		
	UNITS	WG-11222680-290323	QC Batch	WG-11222680-290323	RDL	QC Batch
	ONITS	-KH-09	QC Dateil	-KH-10	NDE.	QC Daten
Calculated Parameters						
Dissolved Hardness (CaCO3)	mg/L	85.8	A925748	175	0.50	A925748
Elements						
Dissolved Mercury (Hg)	ug/L	<0.0019	A927497	<0.0019	0.0019	A927770
Dissolved Metals by ICPMS	•				•	•
Dissolved Aluminum (Al)	ug/L	3.7	A925968	13.4	3.0	A925968
Dissolved Antimony (Sb)	ug/L	<0.50	A925968	<0.50	0.50	A925968
Dissolved Arsenic (As)	ug/L	0.40	A925968	0.25	0.10	A925968
Dissolved Barium (Ba)	ug/L	3.7	A925968	18.1	1.0	A925968
Dissolved Beryllium (Be)	ug/L	0.15	A925968	<0.10	0.10	A925968
Dissolved Bismuth (Bi)	ug/L	<1.0	A925968	<1.0	1.0	A925968
Dissolved Boron (B)	ug/L	490	A925968	<50	50	A925968
Dissolved Cadmium (Cd)	ug/L	0.034	A925968	0.077	0.010	A925968
Dissolved Chromium (Cr)	ug/L	1.6	A925968	<1.0	1.0	A925968
Dissolved Cobalt (Co)	ug/L	<0.20	A925968	<0.20	0.20	A925968
Dissolved Copper (Cu)	ug/L	2.34	A925968	1.66	0.20	A925968
Dissolved Iron (Fe)	ug/L	11.9	A925968	16.5	5.0	A925968
Dissolved Lead (Pb)	ug/L	<0.20	A925968	<0.20	0.20	A925968
Dissolved Lithium (Li)	ug/L	<2.0	A925968	<2.0	2.0	A925968
Dissolved Manganese (Mn)	ug/L	1.0	A925968	28.1	1.0	A925968
Dissolved Molybdenum (Mo)	ug/L	<1.0	A925968	<1.0	1.0	A925968
Dissolved Nickel (Ni)	ug/L	<1.0	A925968	<1.0	1.0	A925968
Dissolved Phosphorus (P)	ug/L	20	A925968	23	10	A925968
Dissolved Selenium (Se)	ug/L	0.23	A925968	<0.10	0.10	A925968
Dissolved Silicon (Si)	ug/L	6950	A925968	13600	100	A925968
Dissolved Silver (Ag)	ug/L	<0.020	A925968	<0.020	0.020	A925968
Dissolved Strontium (Sr)	ug/L	37.6	A925968	107	1.0	A925968
Dissolved Thallium (TI)	ug/L	<0.010	A925968	0.018	0.010	A925968
Dissolved Tin (Sn)	ug/L	<5.0	A925968	<5.0	5.0	A925968
Dissolved Titanium (Ti)	ug/L	<5.0	A925968	<5.0	5.0	A925968
Dissolved Uranium (U)	ug/L	<0.10	A925968	<0.10	0.10	A925968
Dissolved Vanadium (V)	ug/L	<5.0	A925968	<5.0	5.0	A925968
RDL = Reportable Detection Li	mit					

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Bureau Veritas ID		BOI522		BOI523		
Sampling Date		2023/03/29		2023/03/29		
Sampling Date		16:00		17:00		
COC Number		689991-03-01		689991-03-01		
	UNITS	WG-11222680-290323	QC Batch	WG-11222680-290323	RDL	QC Batch
	0	-KH-09	QC Dates.	-KH-10		QC Date
Dissolved Zinc (Zn)	ug/L	<5.0	A925968	<5.0	5.0	A925968
Dissolved Zirconium (Zr)	ug/L	<0.10	A925968	<0.10	0.10	A925968
Dissolved Calcium (Ca)	mg/L	27.5	A925749	46.3	0.050	A925749
Dissolved Magnesium (Mg)	mg/L	4.16	A925749	14.4	0.050	A925749
Dissolved Potassium (K)	mg/L	0.365	A925749	1.05	0.050	A925749
Dissolved Sodium (Na)	mg/L	5.79	A925749	26.3	0.050	A925749
Dissolved Sulphur (S)	mg/L	<3.0	A925749	<3.0	3.0	A925749
RDL = Reportable Detection Li	mit	_	•	_		•

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

GENERAL COMMENTS

Version 2: Report reissued to update the sampling date of all samples from 2023/03/23 to 2023/03/29 as per client request on 2023/04/12.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A927637	D10-ANTHRACENE (sur.)	2023/04/04			94	50 - 140	104	%		
A927637	D8-ACENAPHTHYLENE (sur.)	2023/04/04			91	50 - 140	93	%		
A927637	D8-NAPHTHALENE (sur.)	2023/04/04			84	50 - 140	87	%		
A927637	TERPHENYL-D14 (sur.)	2023/04/04			87	50 - 140	92	%		
A927641	O-TERPHENYL (sur.)	2023/04/04			96	60 - 140	103	%		
A925886	Orthophosphate (P)	2023/04/01	104 (1)	80 - 120	96	80 - 120	<0.0030	mg/L	0.99 (2)	20
A925901	Nitrate plus Nitrite (N)	2023/04/01	96	80 - 120	109	80 - 120	<0.020	mg/L	1.6 (3)	25
A925902	Nitrite (N)	2023/04/01	98	80 - 120	106	80 - 120	<0.0050	mg/L	NC (3)	20
A925968	Dissolved Aluminum (Al)	2023/04/03	118	80 - 120	104	80 - 120	<3.0	ug/L	1.3 (3)	20
A925968	Dissolved Antimony (Sb)	2023/04/03	NC	80 - 120	105	80 - 120	<0.50	ug/L	0.14 (3)	20
A925968	Dissolved Arsenic (As)	2023/04/03	119	80 - 120	104	80 - 120	<0.10	ug/L	0.12 (3)	20
A925968	Dissolved Barium (Ba)	2023/04/03	119	80 - 120	104	80 - 120	<1.0	ug/L	0.74 (3)	20
A925968	Dissolved Beryllium (Be)	2023/04/03	99	80 - 120	100	80 - 120	<0.10	ug/L	NC (3)	20
A925968	Dissolved Bismuth (Bi)	2023/04/03	106	80 - 120	104	80 - 120	<1.0	ug/L	NC (3)	20
A925968	Dissolved Boron (B)	2023/04/03	110	80 - 120	112	80 - 120	<50	ug/L	NC (3)	20
A925968	Dissolved Cadmium (Cd)	2023/04/03	109	80 - 120	102	80 - 120	<0.010	ug/L	NC (3)	20
A925968	Dissolved Chromium (Cr)	2023/04/03	109	80 - 120	102	80 - 120	<1.0	ug/L	NC (3)	20
A925968	Dissolved Cobalt (Co)	2023/04/03	102	80 - 120	96	80 - 120	<0.20	ug/L	NC (3)	20
A925968	Dissolved Copper (Cu)	2023/04/03	99	80 - 120	96	80 - 120	<0.20	ug/L	NC (3)	20
A925968	Dissolved Iron (Fe)	2023/04/03	104	80 - 120	106	80 - 120	<5.0	ug/L	7.7 (3)	20
A925968	Dissolved Lead (Pb)	2023/04/03	107	80 - 120	102	80 - 120	<0.20	ug/L	NC (3)	20
A925968	Dissolved Lithium (Li)	2023/04/03	94	80 - 120	98	80 - 120	<2.0	ug/L	3.8 (3)	20
A925968	Dissolved Manganese (Mn)	2023/04/03	110	80 - 120	101	80 - 120	<1.0	ug/L	3.1 (3)	20
A925968	Dissolved Molybdenum (Mo)	2023/04/03	NC	80 - 120	107	80 - 120	<1.0	ug/L	1.0 (3)	20
A925968	Dissolved Nickel (Ni)	2023/04/03	104	80 - 120	100	80 - 120	<1.0	ug/L	NC (3)	20
A925968	Dissolved Phosphorus (P)	2023/04/03	122 (4)	80 - 120	106	80 - 120	<10	ug/L	1.6 (3)	20
A925968	Dissolved Selenium (Se)	2023/04/03	100	80 - 120	102	80 - 120	<0.10	ug/L	3.0 (3)	20
A925968	Dissolved Silicon (Si)	2023/04/03	106	80 - 120	110	80 - 120	<100	ug/L	0.85 (3)	20
A925968	Dissolved Silver (Ag)	2023/04/03	109	80 - 120	103	80 - 120	<0.020	ug/L	NC (3)	20
A925968	Dissolved Strontium (Sr)	2023/04/03	NC	80 - 120	104	80 - 120	<1.0	ug/L	0.081 (3)	20
A925968	Dissolved Thallium (TI)	2023/04/03	111	80 - 120	104	80 - 120	<0.010	ug/L	NC (3)	20
A925968	Dissolved Tin (Sn)	2023/04/03	114	80 - 120	105	80 - 120	<5.0	ug/L	NC (3)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	<u> </u>
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A925968	Dissolved Titanium (Ti)	2023/04/03	114	80 - 120	102	80 - 120	<5.0	ug/L	NC (3)	20
A925968	Dissolved Uranium (U)	2023/04/03	119	80 - 120	105	80 - 120	<0.10	ug/L	0.53 (3)	20
A925968	Dissolved Vanadium (V)	2023/04/03	114	80 - 120	102	80 - 120	<5.0	ug/L	NC (3)	20
A925968	Dissolved Zinc (Zn)	2023/04/03	104	80 - 120	103	80 - 120	<5.0	ug/L	NC (3)	20
A925968	Dissolved Zirconium (Zr)	2023/04/03	119	80 - 120	102	80 - 120	<0.10	ug/L	NC (3)	20
A926922	Total Dissolved Solids	2023/04/04	98	80 - 120	102	80 - 120	<10	mg/L	5.7 (3)	20
A927135	Chloride (CI)	2023/04/03	104	80 - 120	100	80 - 120	<1.0	mg/L	NC (3)	20
A927135	Sulphate (SO4)	2023/04/03	98	80 - 120	96	80 - 120	<1.0	mg/L	1.0 (3)	20
A927155	Total Ammonia (N)	2023/04/03	105 (5)	80 - 120	106	80 - 120	<0.015	mg/L	NC (6)	20
A927157	Conductivity	2023/04/03			101	80 - 120	<2.0	uS/cm	0.41 (3)	10
A927158	Alkalinity (PP as CaCO3)	2023/04/03					<1.0	mg/L	NC (3)	20
A927158	Alkalinity (Total as CaCO3)	2023/04/03	NC	80 - 120	95	80 - 120	<1.0	mg/L	1.3 (3)	20
A927158	Bicarbonate (HCO3)	2023/04/03					<1.0	mg/L	1.3 (3)	20
A927158	Carbonate (CO3)	2023/04/03					<1.0	mg/L	NC (3)	20
A927158	Hydroxide (OH)	2023/04/03					<1.0	mg/L	NC (3)	20
A927497	Dissolved Mercury (Hg)	2023/04/04	95	80 - 120	100	80 - 120	<0.0019	ug/L	NC (3)	20
A927544	Total Sulphide	2023/04/04	45 (4)	80 - 120	91	80 - 120	<0.0018	mg/L	NC (3)	20
A927637	1-Methylnaphthalene	2023/04/04			91	50 - 140	<0.050	ug/L		
A927637	2-Methylnaphthalene	2023/04/04			87	50 - 140	<0.10	ug/L		
A927637	Acenaphthene	2023/04/04			91	50 - 140	<0.050	ug/L		
A927637	Acenaphthylene	2023/04/04			89	50 - 140	<0.050	ug/L		
A927637	Acridine	2023/04/04			98	50 - 140	<0.050	ug/L		
A927637	Anthracene	2023/04/04			96	50 - 140	<0.010	ug/L		
A927637	Benzo(a)anthracene	2023/04/04			94	50 - 140	<0.010	ug/L		
A927637	Benzo(a)pyrene	2023/04/04			95	50 - 140	<0.0050	ug/L		
A927637	Benzo(b&j)fluoranthene	2023/04/04			94	50 - 140	<0.030	ug/L		
A927637	Benzo(g,h,i)perylene	2023/04/04			89	50 - 140	<0.050	ug/L		
A927637	Benzo(k)fluoranthene	2023/04/04			99	50 - 140	<0.050	ug/L		
A927637	Chrysene	2023/04/04			98	50 - 140	<0.020	ug/L		
A927637	Dibenz(a,h)anthracene	2023/04/04			90	50 - 140	<0.0030	ug/L		
A927637	Fluoranthene	2023/04/04			85	50 - 140	<0.020	ug/L		
A927637	Fluorene	2023/04/04			89	50 - 140	<0.050	ug/L		

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
A927637	Indeno(1,2,3-cd)pyrene	2023/04/04			92	50 - 140	<0.050	ug/L		
A927637	Naphthalene	2023/04/04			88	50 - 140	<0.10	ug/L		
A927637	Phenanthrene	2023/04/04			87	50 - 140	<0.050	ug/L		
A927637	Pyrene	2023/04/04			84	50 - 140	<0.020	ug/L		
A927637	Quinoline	2023/04/04			107	50 - 140	<0.020	ug/L		
A927641	EPH (C10-C19)	2023/04/04			86	70 - 130	<0.20	mg/L		
A927641	EPH (C19-C32)	2023/04/04			108	70 - 130	<0.20	mg/L		
A927770	Dissolved Mercury (Hg)	2023/04/04	99	80 - 120	94	80 - 120	<0.0019	ug/L	NC (3)	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Matrix Spike Parent ID [BOI518-01]
- (2) Duplicate Parent ID [BOI518-01]
- (3) Duplicate Parent ID
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (5) Matrix Spike Parent ID [BOI518-06]
- (6) Duplicate Parent ID [BOI518-06]

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

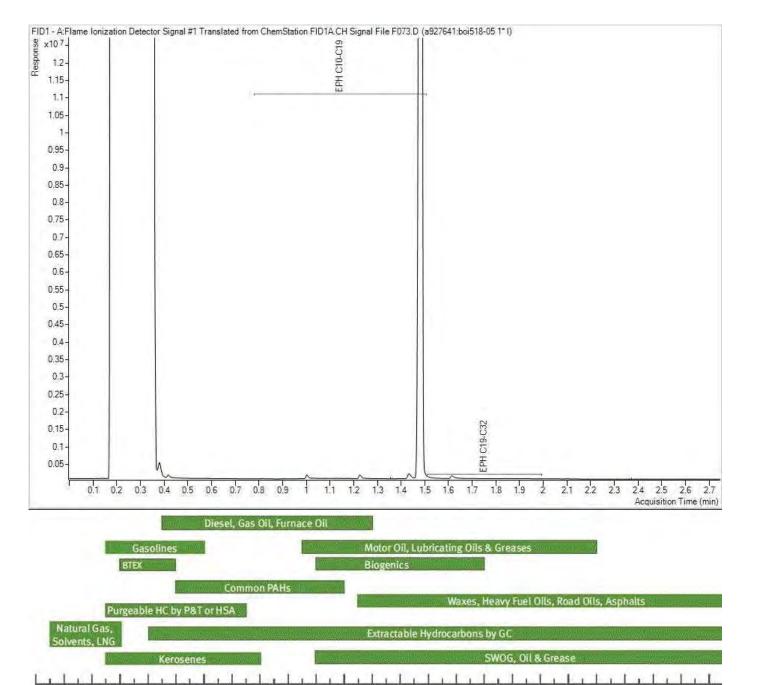
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Automated Statchk


Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

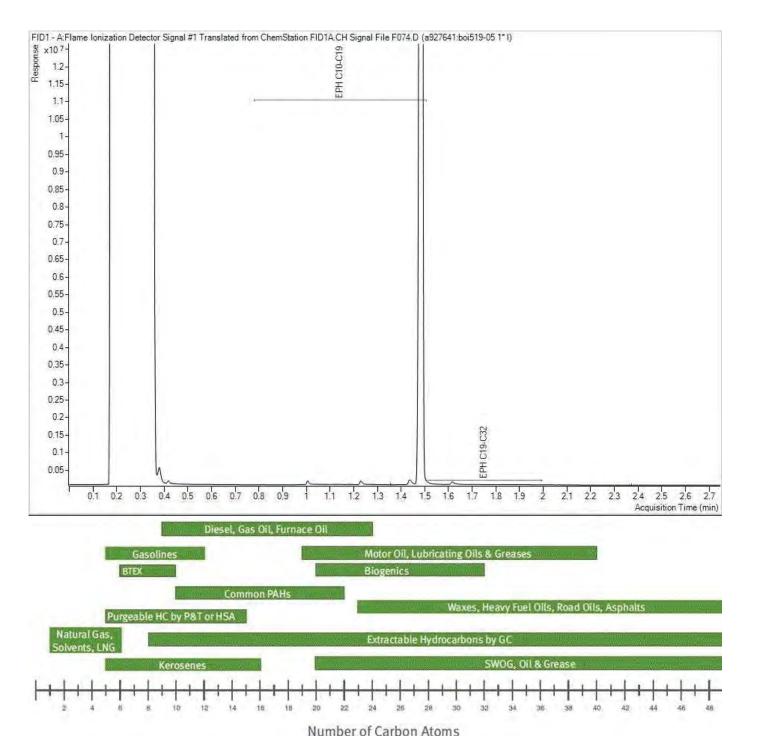
purity file	AP Invoices - 455 PHILLIP 8	735 TREET		Company Ner Covered Name Address	The second second	erton	=		com		- 6	G. #		735-002 1122268			Ξ	C3224	ige_coc	BecSe Order #
	(519) 884-051 APinucipos 33		725-1394 Canada(2)	There are	KOMMEDI COSCIDOR H National Edit	- fot Co	00	and	- (C)Y) nie bede		trapica (Auren lim di Jeograma Dy		Ground	vater				Chee of Country Record	Project Manage
ge (sale	you -	9		***************************************	Vulnetim .					ARRA			PLEASE E	É SPECY K	7				Turnerpand Time (TAT)	
00	Week Guardy	DOL (< FEC) FROM SIME OF S	YEAR CHAIRM	. DYLINT NY YO N	ИЕЛЦ У ЕНПАВ		[N/A] 2 PAN	Conductivity, Ct. SO4, NO2, NO3, N+N, PO4	Specialed Alkalinity	Suphide + HZS Calc	Subhide Un onlind (as H25) (Daid)	Ammonia-N (Total)	Dissolved Matala with CV Hg. Hardness	rotal Diesphyrd Sciets (Fitt. Residae)	TYCL PRH (GPH)	Hed 19	d Temperature	Coll ha do Standard Visual col stry - sell Also Sper I DAY [State Coll	Standard TAT: a neil specified TAT is 27 MMMON rings for could felicial TAT is a could felicial TAT is a could felicial TAT in a could felici	DOCUSED PRESENT OF STREET OF STREET, S
*	ergris this cools (Label	Serges (Louisse) his and	aler I	Dep Bargino	Tern-European	Mere	3	D S	S	3,5	35	A	ST	100	聖	7	P. Ball	Fel Sotte	Des	*
												7		2.3				-		
	WEI	222660-290323-	KH-05	29-03-23	10.45	W	4	X	X	X	X	×	X	X	X					
Г		11722680-290373-	and the second second	29-05-23	1055	W	4 .	X	X	X	X	X	X	X	X		77			
П		1222680-290323-		29.05-23	1345	W	4	×	×	X	X	X	X	X	X					
		1227680 - 290323			1320	W	11:	X	2	X	4	X	Z	1	5					
		1227680-290328		7.7.			1	X	(X	4	4	1	V	~	5					
-		the state of the s		29-03-25	1600	M	4	V	4	X	V	1	0	\$	\Rightarrow	_	-		Planse nur enwar	1 mm 1100 1
	wg	1727680 -290323	5-KH-10	29-63-23	1700	W	1	/		/	V	/		/			-		Please put samp	LE OIT TOOL
-			-	-	-	_	H													-
_									-									-		
	TANGONED IN: (Sund	en-Priori	Date: (770m	1900 Tare	del	-	1	(Distriction	nerved:		_	Sale: 177.0	MACOO:	Time	-	Liwind night	_		Late Date Drivy	
all	Deen Has	25	=3/03/		110000	10 Fo	ela	ne	CRO	117	- 9	1023/0		1406	1 1000	amount of	Timation	. 196	The second secon	by See Head or Delaid

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-290323-KH-05

EPH in Water when PAH required Chromatogram

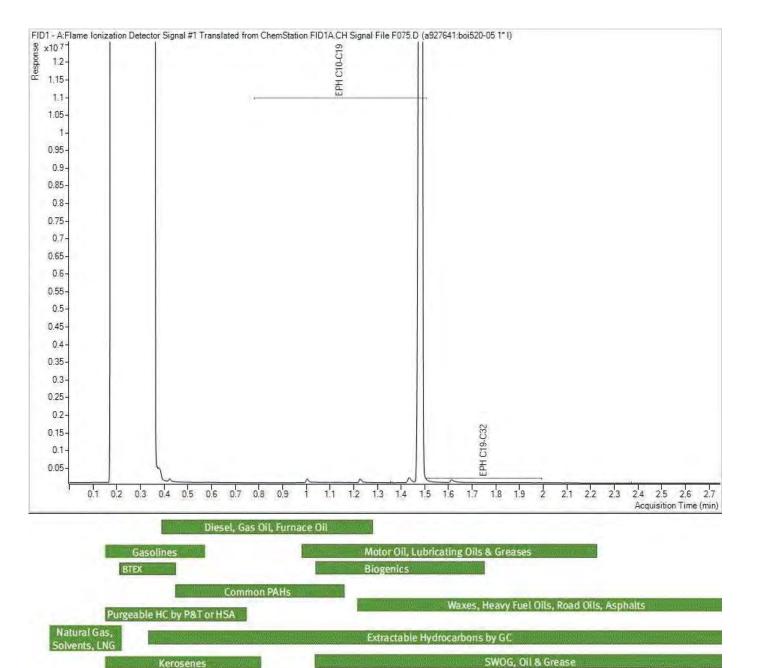
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


18

16

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-290323-KH-06

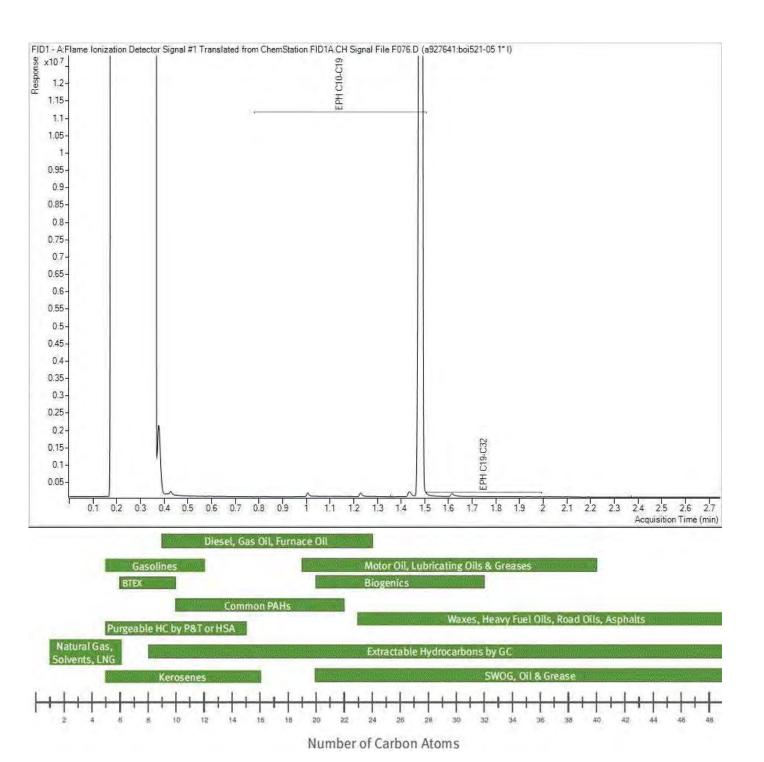

EPH in Water when PAH required Chromatogram

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-290323-KH-07

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

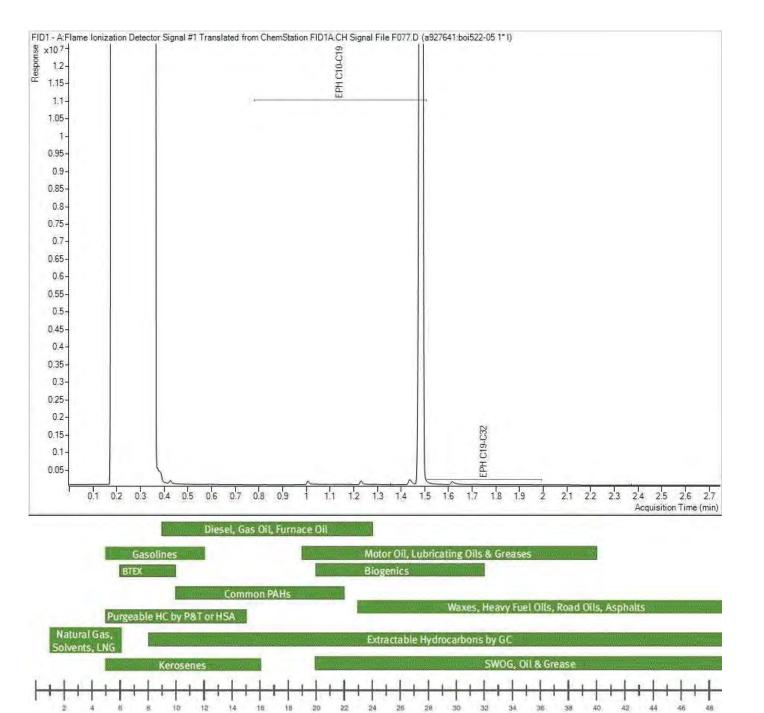

18

16

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-290323-KH-08

EPH in Water when PAH required Chromatogram

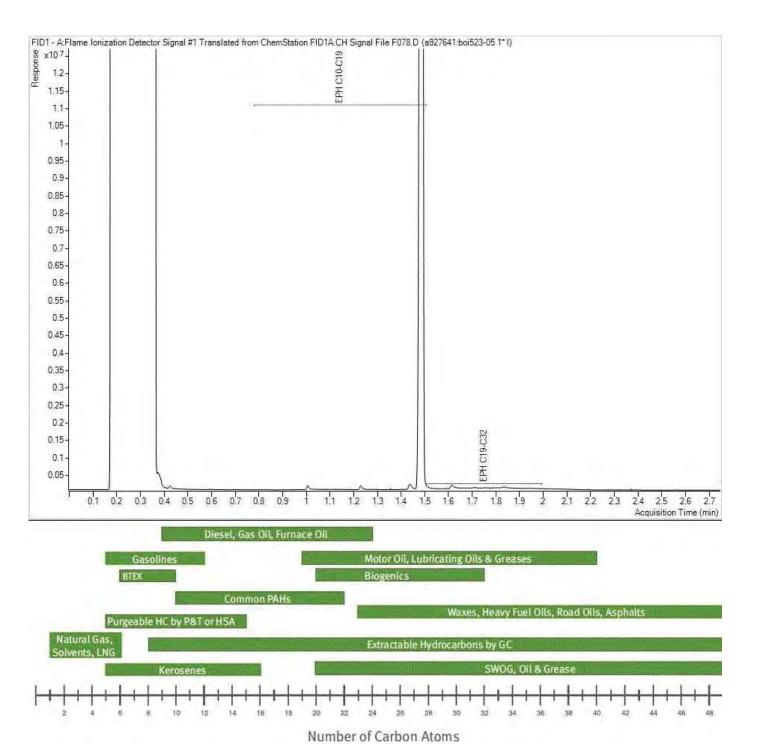


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-290323-KH-09

EPH in Water when PAH required Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-290323-KH-10

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1

Site#: Groundwater

Site Location: NEW LANDFILL Your C.O.C. #: 694569-01-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/07/27

Report #: R3372034 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C354929 Received: 2023/07/19, 10:15

Sample Matrix: Water # Samples Received: 4

# Jampies Received. 4					
		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	4	N/A	2023/07/20	BBY6SOP-00026	SM 24 2320 B m
Chloride/Sulphate by Auto Colourimetry	4	N/A	2023/07/24	BBY6SOP-00011 /	SM24-4500-CI/SO4-E m
				BBY6SOP-00017	
Conductivity @25C	4	N/A	2023/07/20	BBY6SOP-00026	SM 24 2510 B m
Sulphide (as H2S) (1)	4	N/A	2023/07/24		Auto Calc
Un-ionized Hydrogen Sulphide as S Calc (1)	4	N/A	2023/07/25		
Hardness (calculated as CaCO3)	4	N/A	2023/07/24	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CV (2)	4	2023/07/26	2023/07/26	AB SOP-00084	BCMOE BCLM Oct2013 m
EPH in Water when PAH required	4	2023/07/21	2023/07/21	BBY8SOP-00029	BCMOE BCLM Sep2017 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	4	N/A	2023/07/24	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (2)	4	N/A	2023/07/22	BBY7SOP-00002	EPA 6020b R2 m
Ammonia-N (Total)	4	N/A	2023/07/25	AB SOP-00007	SM 24 4500 NH3 A G m
Nitrate + Nitrite (N)	4	N/A	2023/07/20	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	4	N/A	2023/07/20	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrogen - Nitrate (as N)	4	N/A	2023/07/21	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	4	2023/07/21	2023/07/21	BBY8SOP-00021	BCMOE BCLM Jul2017m
Orthophosphate by Konelab (3)	4	N/A	2023/07/20	BBY6SOP-00013	SM 24 4500-P E m
Total Sulphide (1)	4	N/A	2023/07/24	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue)	4	2023/07/21	2023/07/24	BBY6SOP-00033	SM 24 2540 C m
EPH less PAH in Water by GC/FID (4)	4	N/A	2023/07/24	BBY WI-00033	Auto Calc
Field pH	4	N/A	2023/07/20		
Field Temperature	4	N/A	2023/07/20		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1

Site#: Groundwater

Site Location: NEW LANDFILL Your C.O.C. #: 694569-01-01

Report Date: 2023/07/27

Report #: R3372034 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C354929

Received: 2023/07/19. 10:15

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (4) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Encryption Key

Bureau Veritas 27 Jul 2023 11:29:09

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist–Emergency Spill Response Email: Brody.Andersen@bureauveritas.com Phone# (780)577-7120

PHOHE# (780)377-7120

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ014	BUZ014	BUZ015	BUZ015		
Sampling Date		2023/07/17	2023/07/17	2023/07/17	2023/07/17		
Sampling Date		15:15	15:15	16:15	16:15		
COC Number		694569-01-01	694569-01-01	694569-01-01	694569-01-01		
	UNITS	WG-11222680-170723 -KH-01	WG-11222680-170723 -KH-01 Lab-Dup	WG-11222680-170723 -KH-02	WG-11222680-170723 -KH-02 Lab-Dup	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	N/A	<0.0050	<0.0050	0.0050	B041712
Calculated Parameters							
Nitrate (N)	mg/L	0.653	N/A	0.298	N/A	0.020	B040742
Sulphide (as H2S)	mg/L	<0.0020	N/A	<0.0020	N/A	0.0020	B041248
Field Parameters							
Field pH	рН	7.24	N/A	7.75	N/A	N/A	ONSITE
Field Temperature	°C	16.19	N/A	13.68	N/A	N/A	ONSITE
Misc. Inorganics							
Conductivity	uS/cm	160	160	150	N/A	2.0	B041783
Total Dissolved Solids	mg/L	92	N/A	38	N/A	10	B042634
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	N/A	1.0	B041787
Alkalinity (Total as CaCO3)	mg/L	73	73	63	N/A	1.0	B041787
Bicarbonate (HCO3)	mg/L	89	90	77	N/A	1.0	B041787
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	N/A	1.0	B041787
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	N/A	1.0	B041787
Total Sulphide	mg/L	<0.0018	N/A	<0.0018	N/A	0.0018	B045000
Chloride (CI)	mg/L	<1.0	N/A	3.4	N/A	1.0	B045835
Sulphate (SO4)	mg/L	3.8	N/A	7.0	N/A	1.0	B045835
Nutrients							
Total Ammonia (N)	mg/L	<0.015	N/A	<0.015	N/A	0.015	B046614
Orthophosphate (P)	mg/L	0.0048	N/A	0.010	N/A	0.0030	B041593
Nitrate plus Nitrite (N)	mg/L	0.653	N/A	0.298	0.299	0.020	B041707

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ016	BUZ017		
Sampling Date		2023/07/17	2023/07/17		
Jamping Date		17:20	17:30		
COC Number		694569-01-01	694569-01-01		
	UNITS	WG-11222680-170723 -KH-03	WG-11222680-170723 -KH-04	RDL	QC Batch
ANIONS					
Nitrite (N)	mg/L	<0.0050	<0.0050	0.0050	B041712
Calculated Parameters	•				
Nitrate (N)	mg/L	0.046	0.045	0.020	B040742
Sulphide (as H2S)	mg/L	<0.0020	<0.0020	0.0020	B041248
Field Parameters					
Field pH	рН	7.84	7.84	N/A	ONSITE
Field Temperature	°C	19.42	19.42	N/A	ONSITE
Misc. Inorganics					
Conductivity	uS/cm	60	60	2.0	B041783
Total Dissolved Solids	mg/L	42	46	10	B042634
Anions					
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	1.0	B041787
Alkalinity (Total as CaCO3)	mg/L	25	26	1.0	B041787
Bicarbonate (HCO3)	mg/L	31	32	1.0	B041787
Carbonate (CO3)	mg/L	<1.0	<1.0	1.0	B041787
Hydroxide (OH)	mg/L	<1.0	<1.0	1.0	B041787
Total Sulphide	mg/L	<0.0018	<0.0018	0.0018	B045000
Chloride (Cl)	mg/L	<1.0	<1.0	1.0	B045835
Sulphate (SO4)	mg/L	2.2	2.2	1.0	B045835
Nutrients					
Total Ammonia (N)	mg/L	<0.015	0.020	0.015	B046614
Orthophosphate (P)	mg/L	<0.0030	<0.0030	0.0030	B041593
		0.046	0.045	0.020	B041707

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		BUZ014	BUZ015	BUZ016	BUZ017		
Sampling Date		2023/07/17	2023/07/17	2023/07/17	2023/07/17		
Sampling Date		15:15	16:15	17:20	17:30		
COC Number		694569-01-01	694569-01-01	694569-01-01	694569-01-01		
	UNITS	WG-11222680-170723	WG-11222680-170723	WG-11222680-170723	WG-11222680-170723	BDI	QC Batch
	UNITS	-KH-01	-KH-02	-KH-03	-KH-04	RDL	QC Batch
Polycyclic Aromatics							
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042787
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B042787
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B042787
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B042787
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B042787
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B042787
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B042787
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B042787
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B042787
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	B042787
Surrogate Recovery (%)	•		•			-	-
D10-ANTHRACENE (sur.)	%	89	90	88	88	N/A	B042787
D8-ACENAPHTHYLENE (sur.)	%	88	89	88	87	N/A	B042787
D8-NAPHTHALENE (sur.)	%	85	83	82	82	N/A	B042787
TERPHENYL-D14 (sur.)	%	82	83	82	82	N/A	B042787
RDL = Reportable Detection L	imit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

TOTAL PETROLEUM HYDROCARBONS (WATER)

Bureau Veritas ID		BUZ014	BUZ015	BUZ016	BUZ017		
Sampling Date		2023/07/17 15:15	2023/07/17 16:15	2023/07/17 17:20	2023/07/17 17:30		
COC Number		694569-01-01	694569-01-01	694569-01-01	694569-01-01		
	UNITS	WG-11222680-170723 -KH-01	WG-11222680-170723 -KH-02	WG-11222680-170723 -KH-03	WG-11222680-170723 -KH-04	RDL	QC Batch
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B041128
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B041128
Ext. Pet. Hydrocarbon	•						
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B042796
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B042796
Surrogate Recovery (%)	•						
O-TERPHENYL (sur.)	%	100	101	101	99	N/A	B042796
RDL = Reportable Detection N/A = Not Applicable	Limit					•	

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

MISCELLANEOUS (WATER)

Bureau Veritas ID		BUZ014	BUZ015	BUZ016		
Sampling Date		2023/07/17	2023/07/17	2023/07/17		
Jumphing Dute		15:15	16:15	17:20		
COC Number		694569-01-01	694569-01-01	694569-01-01		
	LINUTS	WG-11222680-170723	WG-11222680-170723	WG-11222680-170723	BDI	OC Botob
	UNITS	-KH-01 -KH-02		-KH-03	RDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B041137
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B041137
I						

Bureau Veritas ID		BUZ017		
Sampling Date		2023/07/17		
Sampling Date		17:30		
COC Number		694569-01-01		
	UNITS	WG-11222680-170723	RDL	QC Batch
	OIVITS	-KH-04	NDL	QC Batch
Calculated Parameters				
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	0.0050	B041137
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	0.0050	B041137
RDL = Reportable Detection Limit		•		

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BUZ014	BUZ014	BUZ015	BUZ016		
Sampling Date		2023/07/17	2023/07/17	2023/07/17	2023/07/17		
Sampling Date		15:15	15:15	16:15	17:20		
COC Number		694569-01-01	694569-01-01	694569-01-01	694569-01-01		
		WG-11222680-170723	WG-11222680-170723	WG-11222680-170723	WG-11222680-170723		
	UNITS	-KH-01	-KH-01	-KH-02	-KH-03	RDL	QC Batch
			Lab-Dup				
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	65.3	N/A	59.1	26.4	0.50	B040635
Elements							
Dissolved Mercury (Hg)	ug/L	<0.0019	N/A	<0.0019	<0.0019	0.0019	B048284
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	<3.0	<3.0	<3.0	8.8	3.0	B042783
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	B042783
Dissolved Arsenic (As)	ug/L	<0.10	<0.10	0.39	<0.10	0.10	B042783
Dissolved Barium (Ba)	ug/L	2.4	2.4	2.7	<1.0	1.0	B042783
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042783
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Boron (B)	ug/L	<50	<50	92	<50	50	B042783
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B042783
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B042783
Dissolved Copper (Cu)	ug/L	<0.20	<0.20	0.70	<0.20	0.20	B042783
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B042783
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	B042783
Dissolved Manganese (Mn)	ug/L	2.5	2.5	<1.0	<1.0	1.0	B042783
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Phosphorus (P)	ug/L	<10	<10	14	<10	10	B042783
Dissolved Selenium (Se)	ug/L	0.11	0.11	<0.10	<0.10	0.10	B042783
Dissolved Silicon (Si)	ug/L	7520	7620	6410	2570	100	B042783
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B042783
Dissolved Strontium (Sr)	ug/L	28.2	28.2	27.7	11.5	1.0	B042783
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B042783
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
DDI - Bonortoble Detection Liv	-			•			

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BUZ014	BUZ014	BUZ015	BUZ016		
Sampling Date		2023/07/17 15:15	2023/07/17 15:15	2023/07/17 16:15	2023/07/17 17:20		
COC Number		694569-01-01	694569-01-01	694569-01-01	694569-01-01		
	UNITS	WG-11222680-170723 -KH-01	WG-11222680-170723 -KH-01 Lab-Dup	WG-11222680-170723 -KH-02	WG-11222680-170723 -KH-03	RDL	QC Batch
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042783
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042783
Dissolved Calcium (Ca)	mg/L	20.0	N/A	18.7	8.75	0.050	B040637
Dissolved Magnesium (Mg)	mg/L	3.70	N/A	3.02	1.11	0.050	B040637
Dissolved Potassium (K)	mg/L	0.278	N/A	0.338	0.115	0.050	B040637
Dissolved Sodium (Na)	mg/L	5.18	N/A	6.21	0.688	0.050	B040637
Dissolved Sulphur (S)	mg/L	<3.0	N/A	<3.0	<3.0	3.0	B040637

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BUZ017		
Sampling Date		2023/07/17		
Sampling Date		17:30		
COC Number		694569-01-01		
	UNITS	WG-11222680-170723	RDL	QC Batch
		-KH-04		4 0 - 0.00
Calculated Parameters				
Dissolved Hardness (CaCO3)	mg/L	26.0	0.50	B040635
Elements	•	•	•	
Dissolved Mercury (Hg)	ug/L	<0.0019	0.0019	B048535
Dissolved Metals by ICPMS				
Dissolved Aluminum (AI)	ug/L	<3.0	3.0	B042783
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	B042783
Dissolved Arsenic (As)	ug/L	<0.10	0.10	B042783
Dissolved Barium (Ba)	ug/L	<1.0	1.0	B042783
Dissolved Beryllium (Be)	ug/L	<0.10	0.10	B042783
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	B042783
Dissolved Boron (B)	ug/L	<50	50	B042783
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	B042783
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	B042783
Dissolved Cobalt (Co)	ug/L	<0.20	0.20	B042783
Dissolved Copper (Cu)	ug/L	<0.20	0.20	B042783
Dissolved Iron (Fe)	ug/L	<5.0	5.0	B042783
Dissolved Lead (Pb)	ug/L	<0.20	0.20	B042783
Dissolved Lithium (Li)	ug/L	<2.0	2.0	B042783
Dissolved Manganese (Mn)	ug/L	<1.0	1.0	B042783
Dissolved Molybdenum (Mo)	ug/L	<1.0	1.0	B042783
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	B042783
Dissolved Phosphorus (P)	ug/L	<10	10	B042783
Dissolved Selenium (Se)	ug/L	<0.10	0.10	B042783
Dissolved Silicon (Si)	ug/L	2580	100	B042783
Dissolved Silver (Ag)	ug/L	<0.020	0.020	B042783
Dissolved Strontium (Sr)	ug/L	11.5	1.0	B042783
Dissolved Thallium (TI)	ug/L	<0.010	0.010	B042783
Dissolved Tin (Sn)	ug/L	<5.0	5.0	B042783
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	B042783
Dissolved Uranium (U)	ug/L	<0.10	0.10	B042783
Dissolved Vanadium (V)	ug/L	<5.0	5.0	B042783
RDL = Reportable Detection Li	mit			

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BUZ017		
Sampling Date		2023/07/17 17:30		
COC Number		694569-01-01		
	UNITS	WG-11222680-170723 -KH-04	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	B042783
Dissolved Zirconium (Zr)	ug/L	<0.10	0.10	B042783
Dissolved Calcium (Ca)	mg/L	8.64	0.050	B040637
Dissolved Magnesium (Mg)	mg/L	1.07	0.050	B040637
Dissolved Potassium (K)	mg/L	0.111	0.050	B040637
Dissolved Sodium (Na)	mg/L	0.698	0.050	B040637
Dissolved Sulphur (S)	mg/L	<3.0	3.0	B040637
RDL = Reportable Detection L	imit			•

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042787	D10-ANTHRACENE (sur.)	2023/07/21			90	50 - 140	89	%		
B042787	D8-ACENAPHTHYLENE (sur.)	2023/07/21			93	50 - 140	89	%		
B042787	D8-NAPHTHALENE (sur.)	2023/07/21			85	50 - 140	80	%		
B042787	TERPHENYL-D14 (sur.)	2023/07/21			86	50 - 140	82	%		
B042796	O-TERPHENYL (sur.)	2023/07/21			94	60 - 140	98	%		
B041593	Orthophosphate (P)	2023/07/20	102	80 - 120	109	80 - 120	<0.0030	mg/L	1.4 (1)	20
B041707	Nitrate plus Nitrite (N)	2023/07/20	102 (2)	80 - 120	107	80 - 120	<0.020	mg/L	0.47 (3)	25
B041712	Nitrite (N)	2023/07/20	100 (2)	80 - 120	103	80 - 120	< 0.0050	mg/L	NC (3)	20
B041783	Conductivity	2023/07/20			101	90 - 110	<2.0	uS/cm	0.50 (4)	10
B041787	Alkalinity (PP as CaCO3)	2023/07/20					<1.0	mg/L	NC (4)	20
B041787	Alkalinity (Total as CaCO3)	2023/07/20			99	80 - 120	<1.0	mg/L	0.14 (4)	20
B041787	Bicarbonate (HCO3)	2023/07/20					<1.0	mg/L	0.14 (4)	20
B041787	Carbonate (CO3)	2023/07/20					<1.0	mg/L	NC (4)	20
B041787	Hydroxide (OH)	2023/07/20					<1.0	mg/L	NC (4)	20
B042634	Total Dissolved Solids	2023/07/24	101	80 - 120	97	80 - 120	<10	mg/L	2.5 (1)	20
B042783	Dissolved Aluminum (Al)	2023/07/22	99 (5)	80 - 120	103	80 - 120	<3.0	ug/L	NC (6)	20
B042783	Dissolved Antimony (Sb)	2023/07/22	100 (5)	80 - 120	103	80 - 120	<0.50	ug/L	NC (6)	20
B042783	Dissolved Arsenic (As)	2023/07/22	101 (5)	80 - 120	103	80 - 120	<0.10	ug/L	NC (6)	20
B042783	Dissolved Barium (Ba)	2023/07/22	95 (5)	80 - 120	99	80 - 120	<1.0	ug/L	2.4 (6)	20
B042783	Dissolved Beryllium (Be)	2023/07/22	102 (5)	80 - 120	104	80 - 120	<0.10	ug/L	NC (6)	20
B042783	Dissolved Bismuth (Bi)	2023/07/22	98 (5)	80 - 120	98	80 - 120	<1.0	ug/L	NC (6)	20
B042783	Dissolved Boron (B)	2023/07/22	102 (5)	80 - 120	107	80 - 120	<50	ug/L	NC (6)	20
B042783	Dissolved Cadmium (Cd)	2023/07/22	97 (5)	80 - 120	101	80 - 120	<0.010	ug/L	NC (6)	20
B042783	Dissolved Chromium (Cr)	2023/07/22	96 (5)	80 - 120	99	80 - 120	<1.0	ug/L	NC (6)	20
B042783	Dissolved Cobalt (Co)	2023/07/22	93 (5)	80 - 120	98	80 - 120	<0.20	ug/L	NC (6)	20
B042783	Dissolved Copper (Cu)	2023/07/22	93 (5)	80 - 120	98	80 - 120	<0.20	ug/L	NC (6)	20
B042783	Dissolved Iron (Fe)	2023/07/22	103 (5)	80 - 120	105	80 - 120	<5.0	ug/L	NC (6)	20
B042783	Dissolved Lead (Pb)	2023/07/22	104 (5)	80 - 120	101	80 - 120	<0.20	ug/L	NC (6)	20
B042783	Dissolved Lithium (Li)	2023/07/22	100 (5)	80 - 120	102	80 - 120	<2.0	ug/L	NC (6)	20
B042783	Dissolved Manganese (Mn)	2023/07/22	96 (5)	80 - 120	100	80 - 120	<1.0	ug/L	0.52 (6)	20
B042783	Dissolved Molybdenum (Mo)	2023/07/22	101 (5)	80 - 120	104	80 - 120	<1.0	ug/L	NC (6)	20

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042783	Dissolved Nickel (Ni)	2023/07/22	94 (5)	80 - 120	99	80 - 120	<1.0	ug/L	NC (6)	20
B042783	Dissolved Phosphorus (P)	2023/07/22	100 (5)	80 - 120	103	80 - 120	<10	ug/L	NC (6)	20
B042783	Dissolved Selenium (Se)	2023/07/22	100 (5)	80 - 120	102	80 - 120	<0.10	ug/L	0.55 (6)	20
B042783	Dissolved Silicon (Si)	2023/07/22	NC (5)	80 - 120	111	80 - 120	<100	ug/L	1.2 (6)	20
B042783	Dissolved Silver (Ag)	2023/07/22	97 (5)	80 - 120	100	80 - 120	<0.020	ug/L	NC (6)	20
B042783	Dissolved Strontium (Sr)	2023/07/22	99 (5)	80 - 120	101	80 - 120	<1.0	ug/L	0.26 (6)	20
B042783	Dissolved Thallium (Tl)	2023/07/22	99 (5)	80 - 120	99	80 - 120	<0.010	ug/L	NC (6)	20
B042783	Dissolved Tin (Sn)	2023/07/22	97 (5)	80 - 120	105	80 - 120	<5.0	ug/L	NC (6)	20
B042783	Dissolved Titanium (Ti)	2023/07/22	97 (5)	80 - 120	101	80 - 120	<5.0	ug/L	NC (6)	20
B042783	Dissolved Uranium (U)	2023/07/22	103 (5)	80 - 120	100	80 - 120	<0.10	ug/L	NC (6)	20
B042783	Dissolved Vanadium (V)	2023/07/22	97 (5)	80 - 120	101	80 - 120	<5.0	ug/L	NC (6)	20
B042783	Dissolved Zinc (Zn)	2023/07/22	98 (5)	80 - 120	102	80 - 120	<5.0	ug/L	NC (6)	20
B042783	Dissolved Zirconium (Zr)	2023/07/22	100 (5)	80 - 120	101	80 - 120	<0.10	ug/L	NC (6)	20
B042787	Acenaphthene	2023/07/21			82	50 - 140	<0.050	ug/L		
B042787	Acridine	2023/07/21			89	50 - 140	<0.050	ug/L		
B042787	Anthracene	2023/07/21			84	50 - 140	<0.010	ug/L		
B042787	Benzo(a)anthracene	2023/07/21			81	50 - 140	<0.010	ug/L		
B042787	Benzo(a)pyrene	2023/07/21			83	50 - 140	<0.0050	ug/L		
B042787	Fluoranthene	2023/07/21			77	50 - 140	<0.020	ug/L		
B042787	Fluorene	2023/07/21			81	50 - 140	<0.050	ug/L		
B042787	Naphthalene	2023/07/21			81	50 - 140	<0.10	ug/L		
B042787	Phenanthrene	2023/07/21			80	50 - 140	<0.050	ug/L		
B042787	Pyrene	2023/07/21			77	50 - 140	<0.020	ug/L		
B042796	EPH (C10-C19)	2023/07/21			103	70 - 130	<0.20	mg/L		
B042796	EPH (C19-C32)	2023/07/21			108	70 - 130	<0.20	mg/L		
B045000	Total Sulphide	2023/07/24	100	80 - 120	93	80 - 120	<0.0018	mg/L	NC (1)	20
B045835	Chloride (CI)	2023/07/25	106	80 - 120	101	80 - 120	<1.0	mg/L	NC (1)	20
B045835	Sulphate (SO4)	2023/07/25	120	80 - 120	98	80 - 120	<1.0	mg/L	3.7 (1)	20
B046614	Total Ammonia (N)	2023/07/25	124 (7)	80 - 120	109	80 - 120	<0.015	mg/L	NC (1)	20
B048284	Dissolved Mercury (Hg)	2023/07/26	90	80 - 120	98	80 - 120	<0.0019	ug/L	NC (1)	20

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B048535	Dissolved Mercury (Hg)	2023/07/26	99	80 - 120	98	80 - 120	<0.0019	ug/L	NC (1)	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [BUZ015-01]
- (3) Duplicate Parent ID [BUZ015-01]
- (4) Duplicate Parent ID [BUZ014-01]
- (5) Matrix Spike Parent ID [BUZ014-03]
- (6) Duplicate Parent ID [BUZ014-03]
- (7) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

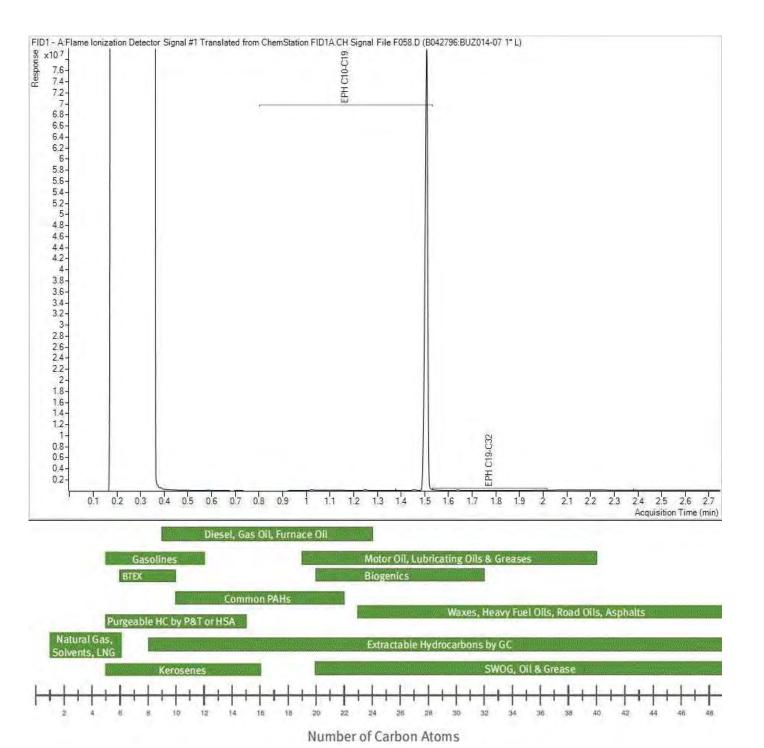
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

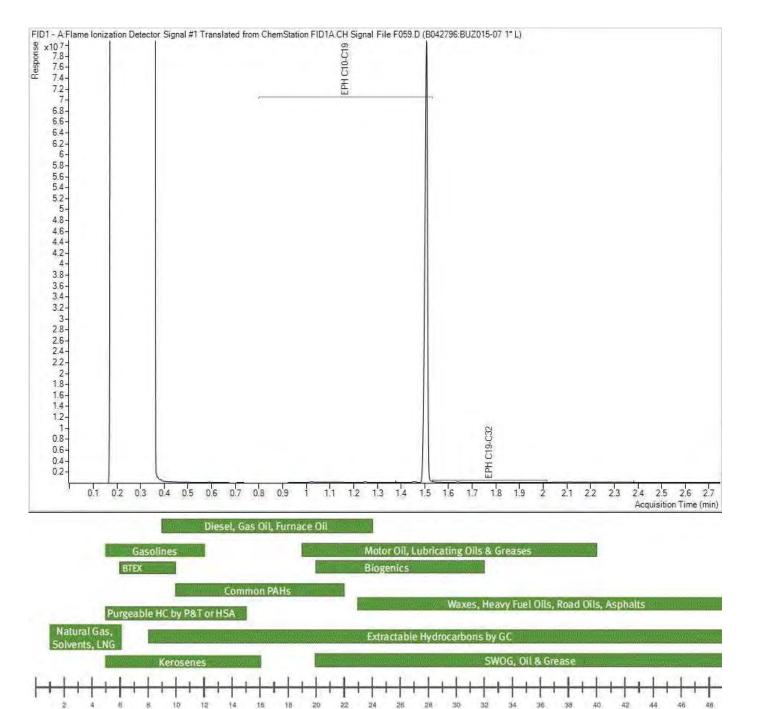

0	G.	Bureau Verites 4006 Canada Way, Burnaby, 8	Iritish Calumbia C	arwija VSG 1KS T	el (604) 734 7276. To	6 fram 800-540	1-6206 Fac (6	04) 731 23	ij awa berik	сот							Chain	Of Custody Record	Page 1 of 1
EXELECT.		INVOICE TO:				Report Inform	metion						Project inf	ormation				Laboratory Use C	inly
pany Name	#163 GHD Lim	nited		Company Nan	- GHD LIY	nited.					iuotation #		C30090					Bureau Veritas Job #	Bottle Order #:
act Name	AP Invoices - 7:			Contact Name	Stephanie Be	erton				_ p	0.#		735-0026						
414	455 PHILLIP ST WATERLOO O	Name and Administration of the Administratio		Address	per PC)					roject #		11222680				\rightarrow	Chain Ot Custody Record	694569 Project Manager
	(519) 884-0510	ALTERNATION OF THE PARTY OF THE	25,1304	-			1145				roject Name		Groundwa	der	_		_		Project Manager
rie el	APinvoices-735		20-1004	Phone Email	NationalEDD	Supportiti	maxxam.c	a,stepha	nie berton	Ch.	ite # langued By		Kames		ask	C.		C#60H569-01-01	Brody Andersen
lagujatory Cr		- Colonia and Colo		-	Instructions	T	T			-			HE SPECIFIC)					Turnaround Time (TAT) Rec	uired.
CSR COME BC Was Other	er Quelity		in th	ne held o	abeled, fiv nd preser ted on 4	wed	Filtered 7 (NO N.) A. Cl., SO4, NO2, NO3,	dkalinity -	+ H2S Calc	Un-ionized (as H2S) (Calc)	a-N (Total)	Metals with CV Hg.	ved Solids (Fit, Residue	H with subtracted PAHs		nperature	(will be ap Standard Please no days - con	Renderd) TAT: pried if Physin TAT is not specified; PAT = 5.7 Working days for most feats. In: Standard TAT for centain hists such as BOX and your Project Marager for details. Iffic Rush TAT (If applies to entire submisses 2 Day 3 Day Dose Requ	iori)
, interessed	e Bercode Label	Sample (Location) Herefica = 11222680 - 1707 23	son o	17 IU7125	Time Sampled	W	Conductivity, New, POA	Speciated Alkalinity	⟨ ★ Sulphide +	Sulphide, t	Ammonia-1	Dissolved	7 X Total Dissolved	X LEPHINEPH	7.24	16.19 Feld Temp	# of Botter		el loch tor #)
	MA	-11222680-17072	3-KH-02	17107/23	1615	W	X	1		^	X	\triangle		1	7.15	12100			
	W6-	11222680 -170723	-KH-Q3	17107/13	17 20	w	VX	X	1	X	X	X	X	X	784	19.47			
	- 10,000	240 PM 2 FB AV 24 H250 CO - 40 CC	CALL STATE OF THE	100000000000000000000000000000000000000	122 122 121	200	VV	1		5	1		1	V	7.84	19.42			
	wa-	11222680-170723	-KH-04	17167123	17 30	W	1					\triangle	X	/	1.54	11-12			
							+												ACHAR MARKET
																		一种的现在	
																		C354929_COC	EV. POLITIC SERVICE
		-									Date: (YYM			140	s used and	<u></u>		Lab Use Only	
	PERT HUSTER	armi,	23/03/13	and the second second	ASSO		ID BY (Signal	16		-	2507		10:15	- not	submitted	Time Ser	utier 1s		Seal Histor Coder?
Kasin	THE PARTY OF THE P		PS16-111-3	114.30	55500				MOILI		2013/07		09.70	-			1 1 "	5,3,2	Yes No

Buress Vertlas Canada (2019) Inc.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-170723-KH-01

EPH in Water when PAH required Chromatogram

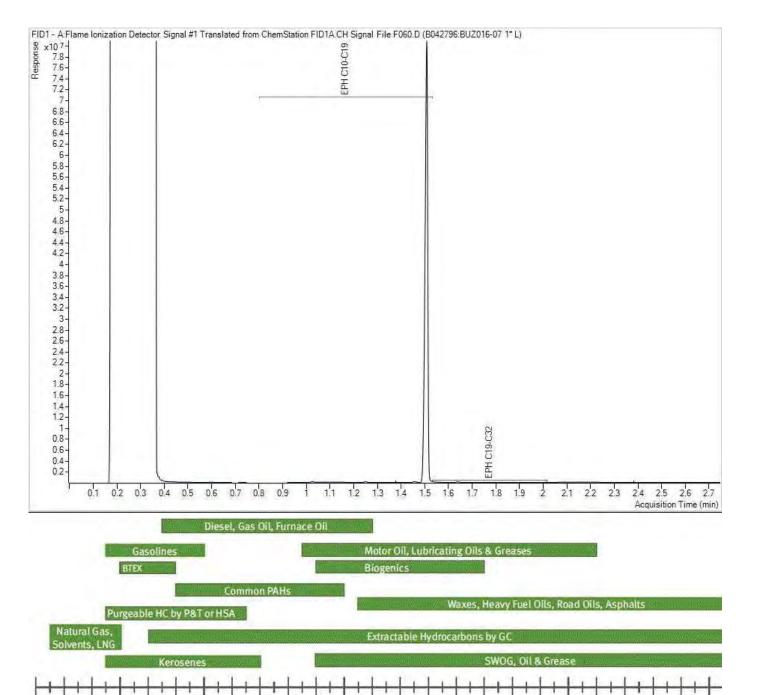


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-170723-KH-02

EPH in Water when PAH required Chromatogram



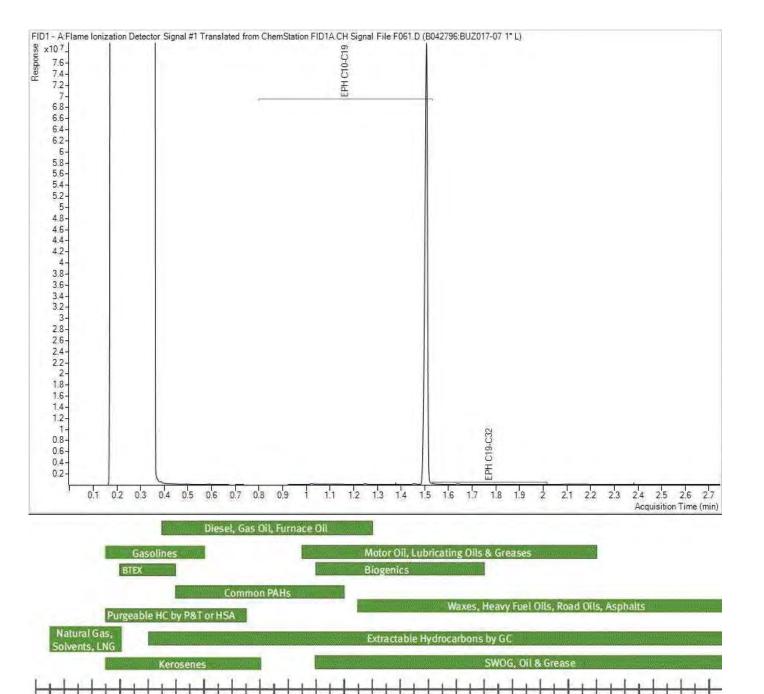
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-170723-KH-03

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


18

16

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-170723-KH-04

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

18

16

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL Your C.O.C. #: 694571-01-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

Report Date: 2023/08/04

Report #: R3376673 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C354963 Received: 2023/07/19, 11:02

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	2	N/A	2023/07/21	BBY6SOP-00026	SM 24 2320 B m
Biochemical Oxygen Demand	2	2023/07/20	2023/07/25	BBY6SOP-00045	SM 23 5210 B m
Chloride/Sulphate by Auto Colourimetry	2	N/A	2023/07/25	BBY6SOP-00011 / BBY6SOP-00017	SM24-4500-CI/SO4-E m
COD by Colorimeter	2	N/A	2023/07/21	BBY6SOP-00024	SM 23 5220 D m
Conductivity @25C	2	N/A	2023/07/21	BBY6SOP-00026	SM 24 2510 B m
Sulphide (as H2S) (1)	2	N/A	2023/07/24		Auto Calc
Un-ionized Hydrogen Sulphide as S Calc (1)	2	N/A	2023/07/25		
Hardness Total (calculated as CaCO3) (2)	2	N/A	2023/07/24	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	2	N/A	2023/07/26	BBY WI-00033	Auto Calc
Mercury (Total) by CV	2	2023/07/24	2023/07/25	AB SOP-00084	BCMOE BCLM Oct2013 m
ICP-OES Dissolved Metals in Water (3)	2	N/A	2023/07/26	BBY7SOP-00018	EPA 6010d m
EPH in Water when PAH required	2	2023/07/21	2023/07/21	BBY8SOP-00029	BCMOE BCLM Sep2017 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	2023/07/20	2023/07/24	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	2	2023/07/21	2023/07/24	BBY7SOP-00003 / BBY7SOP-00002	EPA 6020b R2 m
Ammonia-N (Total)	2	N/A	2023/07/25	AB SOP-00007	SM 24 4500 NH3 A G m
Nitrate + Nitrite (N)	2	N/A	2023/07/21	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	2	N/A	2023/07/21	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrogen - Nitrate (as N)	2	N/A	2023/07/22	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	2	2023/07/21	2023/07/21	BBY8SOP-00021	BCMOE BCLM Jul2017m
pH @25°C (4)	2	N/A	2023/07/21	BBY6SOP-00026	SM 24 4500-H+ B m
Orthophosphate by Konelab (5)	2	N/A	2023/07/21	BBY6SOP-00013	SM 24 4500-P E m
Total Sulphide (1)	2	N/A	2023/07/24	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue)	2	2023/07/24	2023/07/25	BBY6SOP-00033	SM 24 2540 C m
EPH less PAH in Water by GC/FID (6)	2	N/A	2023/07/24	BBY WI-00033	Auto Calc
Total Suspended Solids (NFR)	2	2023/07/21	2023/07/24	BBY6SOP-00034	SM 24 2540 D m
Field pH	2	N/A	2023/07/20		
Field Temperature	2	N/A	2023/07/20		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL Your C.O.C. #: 694571-01-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/08/04

Report #: R3376673 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C354963 Received: 2023/07/19, 11:02

Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St. , Calgary, AB, T2E 6P8 $\,$
- (2) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (3) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (4) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas endeavours to analyze samples as soon as possible after receipt.
- (5) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (6) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL Your C.O.C. #: 694571-01-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

Report Date: 2023/08/04

Report #: R3376673 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C354963

Received: 2023/07/19, 11:02

Encryption Key

Brody Andersen Program Specialist-Emergency Spill Response 04 Aug 2023 16:33:57

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist–Emergency Spill Response

Email: Brody.Andersen@bureauveritas.com

Phone# (780)577-7120

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Report Date: 2023/08/04

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

	BUZ206	BUZ206		BUZ207		
	2023/07/18 16:50	2023/07/18 16:50		2023/07/18 17:00		
	694571-01-01	694571-01-01		694571-01-01		
UNITS	WL-11222680-180723- KH-01	WL-11222680-180723- KH-01 Lab-Dup	QC Batch	WL-11222680-180723- KH-02	RDL	QC Batch
mg/L	<0.0050	<0.0050	B043059	<0.0050	0.0050	B043059
	I	I		I	I.	
mg/L	1530	N/A	B040635	1560	0.50	B040635
mg/L	<0.020	N/A	B040742	<0.020	0.020	B040742
mg/L	0.37	N/A	B040445	0.34	0.0040	B041248
·	1	1	L.	1		
mg/L	8.4	N/A	B040505	8.3	2.0	B040505
mg/L	208	N/A	B040515	210	10	B040515
рН	6.32	N/A	ONSITE	6.32	N/A	ONSITE
°C	24.04	N/A	ONSITE	24.04	N/A	ONSITE
uS/cm	4400	N/A	B042663	4400	2.0	B042663
рН	5.82	N/A	B042658	5.96	N/A	B042658
mg/L	3700 (1)	N/A	B045215	3600 (1)	13	B045215
mg/L	140 (1)	N/A	B040632	180 (1)	5.0	B040632
•						
mg/L	<1.0	N/A	B042664	<1.0	1.0	B042664
mg/L	26	N/A	B042664	30	1.0	B042664
mg/L	31	N/A	B042664	36	1.0	B042664
mg/L	<1.0	N/A	B042664	<1.0	1.0	B042664
mg/L	<1.0	N/A	B042664	<1.0	1.0	B042664
mg/L	0.35 (2)	N/A	B043887	0.32 (2)	0.0036	B043887
mg/L	310	320	B046927	310	5.0	B046927
mg/L	2000	2000	B046927	2000	25	B046927
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	March 16:50 694571-01-01 Multiple 694571-01-01 Multiple 1530 Multiple 1530 Multiple Multiple 1530 Multiple Multiple	2023/07/18	Description	Description	Description

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

- (1) RDL raised due to high concentration of solids in the sample.
- (2) Sample pH <9, preservation incomplete. Due to volatility of analyte, a low bias in the results is likely.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ206	BUZ206		BUZ207		
Sampling Date		2023/07/18 16:50	2023/07/18 16:50		2023/07/18 17:00		
COC Number		694571-01-01	694571-01-01		694571-01-01		
		IWI -11222680-180723-	WL-11222680-180723-		WL-11222680-180723-		
	UNITS	KH-01	KH-01 Lab-Dup	QC Batch	KH-02	RDL	QC Batch
Orthophosphate (P)	mg/L	KH-01 <0.0030	_	QC Batch B042667	KH-02 <0.0030	0.0030	B042667

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		BUZ206	BUZ207		
Sampling Date		2023/07/18	2023/07/18		
Sampling Date		16:50	17:00		
COC Number		694571-01-01	694571-01-01		
	UNITS	WL-11222680-180723-	WL-11222680-180723-	RDL	QC Batch
	UNITS	KH-01	KH-02	KDL	QC Battii
Polycyclic Aromatics					
Naphthalene	ug/L	0.78	0.82	0.10	B042271
Acenaphthene	ug/L	0.094	0.094	0.050	B042271
Fluorene	ug/L	<0.050	<0.050	0.050	B042271
Phenanthrene	ug/L	<0.050	<0.050	0.050	B042271
Anthracene	ug/L	0.018	0.019	0.010	B042271
Acridine	ug/L	<0.050	<0.050	0.050	B042271
Fluoranthene	ug/L	0.021	<0.020	0.020	B042271
Pyrene	ug/L	<0.020	<0.020	0.020	B042271
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	B042271
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	0.0050	B042271
Surrogate Recovery (%)	•	•	•	-	
D10-ANTHRACENE (sur.)	%	85	86	N/A	B042271
D8-ACENAPHTHYLENE (sur.)	%	90	92	N/A	B042271
D8-NAPHTHALENE (sur.)	%	82	84	N/A	B042271
TERPHENYL-D14 (sur.)	%	83	83	N/A	B042271
RDL = Reportable Detection L	imit				
N/A = Not Applicable					

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		BUZ206	BUZ206	BUZ207		
Sampling Date		2023/07/18 16:50	2023/07/18 16:50	2023/07/18 17:00		
COC Number		694571-01-01	694571-01-01	694571-01-01		
	UNITS	WL-11222680-180723- KH-01	WL-11222680-180723- KH-01 Lab-Dup	WL-11222680-180723- KH-02	RDL	QC Batch
Dissolved Metals by ICP						
Dissolved Calcium (Ca)	mg/L	486	475	500	0.50	B048276
	/,	76.7	77.3	76.9	0.050	B048276
Dissolved Magnesium (Mg)	mg/L	76.7	77.3	70.3	0.050	D0+0270

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

TOTAL PETROLEUM HYDROCARBONS (WATER)

Bureau Veritas ID		BUZ206	BUZ207		
Sampling Date		2023/07/18 16:50	2023/07/18 17:00		
COC Number		694571-01-01	694571-01-01		
	UNITS	WL-11222680-180723- KH-01	WL-11222680-180723- KH-02	RDL	QC Batch
Calculated Parameters					
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	0.20	B041128
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	0.20	B041128
Ext. Pet. Hydrocarbon					
EPH (C10-C19)	mg/L	<0.20	<0.20	0.20	B042275
EPH (C19-C32)	mg/L	<0.20	<0.20	0.20	B042275
Surrogate Recovery (%)					
O-TERPHENYL (sur.)	%	86	84	N/A	B042275
RDL = Reportable Detection L N/A = Not Applicable	imit				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

MISCELLANEOUS (WATER)

Bureau Veritas ID		BUZ206	BUZ207		
Sampling Date		2023/07/18 16:50	2023/07/18 17:00		
COC Number		694571-01-01	694571-01-01		
	UNITS	WL-11222680-180723- KH-01	WL-11222680-180723- KH-02	RDL	QC Batch
Calculated Parameters					
Total Un-ionized Hydrogen Sulfide as S	mg/L	0.28	0.25	0.0050	B041137
Total Un-ionized Hydrogen Sulfide as S Total Un-ionized Hydrogen Sulfide as H2S	mg/L mg/L	0.28 0.29	0.25 0.26	0.0050	B041137 B041137

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR TOTAL METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		BUZ206	BUZ207		
Sampling Date		2023/07/18	2023/07/18		
Jamping Date		16:50	17:00		
COC Number		694571-01-01	694571-01-01		
	UNITS		WL-11222680-180723-	RDL	QC Batch
		KH-01	KH-02		•
Calculated Parameters					
Total Hardness (CaCO3)	mg/L	1290	1350	0.50	B040739
Elements	•	•	•	•	•
Total Mercury (Hg)	ug/L	0.0041	0.0041	0.0019	B045377
Total Metals by ICPMS					
Total Aluminum (AI)	ug/L	1250	1170	15	B042401
Total Antimony (Sb)	ug/L	<2.5	<2.5	2.5	B042401
Total Arsenic (As)	ug/L	3.06	3.18	0.50	B042401
Total Barium (Ba)	ug/L	59.8	62.0	5.0	B042401
Total Beryllium (Be)	ug/L	<0.50	<0.50	0.50	B042401
Total Bismuth (Bi)	ug/L	<5.0	<5.0	5.0	B042401
Total Boron (B)	ug/L	1240	1280	100	B042401
Total Cadmium (Cd)	ug/L	0.282	0.297	0.050	B042401
Total Chromium (Cr)	ug/L	10.4	10.2	5.0	B042401
Total Cobalt (Co)	ug/L	13.9	14.5	1.0	B042401
Total Copper (Cu)	ug/L	32.0	31.7	2.5	B042401
Total Iron (Fe)	ug/L	26300	26500	50	B042401
Total Lead (Pb)	ug/L	<1.0	<1.0	1.0	B042401
Total Lithium (Li)	ug/L	11	12	10	B042401
Total Manganese (Mn)	ug/L	4600	4790	5.0	B042401
Total Molybdenum (Mo)	ug/L	<5.0	<5.0	5.0	B042401
Total Nickel (Ni)	ug/L	20.3	18.8	5.0	B042401
Total Phosphorus (P)	ug/L	123	106	50	B042401
Total Selenium (Se)	ug/L	<0.50	<0.50	0.50	B042401
Total Silicon (Si)	ug/L	18400	19100	500	B042401
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	B042401
Total Strontium (Sr)	ug/L	2720	2890	5.0	B042401
Total Thallium (TI)	ug/L	<0.050	<0.050	0.050	B042401
Total Tin (Sn)	ug/L	<25	<25	25	B042401
Total Titanium (Ti)	ug/L	34	26	25	B042401
Total Uranium (U)	ug/L	<0.50	<0.50	0.50	B042401
Total Vanadium (V)	ug/L	<25	<25	25	B042401
RDL = Reportable Detection	Limit				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR TOTAL METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		BUZ206	BUZ207		
Sampling Date		2023/07/18 16:50	2023/07/18 17:00		
COC Number		694571-01-01	694571-01-01		
	UNITS	WL-11222680-180723-	WL-11222680-180723-	RDL	QC Batch
	Oiliis	KH-01	KH-02	NDL	QC Dateii
Total Zinc (Zn)	ug/L	131	132	25	B042401
Total Zirconium (Zr)	ug/L	0.56	0.55	0.50	B042401
Total Calcium (Ca)	mg/L	409	426	0.25	B040818
Total Magnesium (Mg)	mg/L	66.6	69.4	0.25	B040818
Total Potassium (K)	mg/L	48.2	51.0	0.25	B040818
Total Sodium (Na)	mg/L	304	319	0.25	B040818
Total Sulphur (S)	mg/L	593	648	15	B040818
RDL = Reportable Detection L	imit				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

GENERAL COMMENTS

Version 2: Report reissued to remove Fluoride in Water from all samples as per original chain of custody form.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042271	D10-ANTHRACENE (sur.)	2023/07/21	89	50 - 140	84	50 - 140	89	%		
B042271	D8-ACENAPHTHYLENE (sur.)	2023/07/21	88	50 - 140	84	50 - 140	86	%		
B042271	D8-NAPHTHALENE (sur.)	2023/07/21	84	50 - 140	77	50 - 140	76	%		
B042271	TERPHENYL-D14 (sur.)	2023/07/21	95	50 - 140	89	50 - 140	95	%		
B042275	O-TERPHENYL (sur.)	2023/07/21			93	60 - 140	98	%		
B040505	Biochemical Oxygen Demand	2023/07/25			92	85 - 115	<2.0	mg/L	6.3 (1)	20
B040515	Chemical Oxygen Demand	2023/07/21	102	N/A	100	80 - 120	<10	mg/L	3.3 (1)	20
B040632	Total Suspended Solids	2023/07/24	103	80 - 120	99	80 - 120	<1.0	mg/L	NC (1)	20
B042271	Acenaphthene	2023/07/21	85	50 - 140	78	50 - 140	<0.050	ug/L	12 (1)	40
B042271	Acridine	2023/07/21	102	50 - 140	99	50 - 140	<0.050	ug/L	0.13 (1)	40
B042271	Anthracene	2023/07/21	94	50 - 140	87	50 - 140	<0.010	ug/L	17 (1)	40
B042271	Benzo(a)anthracene	2023/07/21	89	50 - 140	78	50 - 140	<0.010	ug/L	2.7 (1)	40
B042271	Benzo(a)pyrene	2023/07/21	81	50 - 140	75	50 - 140	<0.0050	ug/L	8.8 (1)	40
B042271	Fluoranthene	2023/07/21	94	50 - 140	86	50 - 140	<0.020	ug/L	11 (1)	40
B042271	Fluorene	2023/07/21	87	50 - 140	80	50 - 140	<0.050	ug/L	20 (1)	40
B042271	Naphthalene	2023/07/21	79	50 - 140	73	50 - 140	<0.10	ug/L	11 (1)	40
B042271	Phenanthrene	2023/07/21	84	50 - 140	77	50 - 140	<0.050	ug/L	12 (1)	40
B042271	Pyrene	2023/07/21	96	50 - 140	88	50 - 140	<0.020	ug/L	12 (1)	40
B042275	EPH (C10-C19)	2023/07/21			102	70 - 130	<0.20	mg/L	NC (1)	30
B042275	EPH (C19-C32)	2023/07/21			105	70 - 130	<0.20	mg/L	NC (1)	30
B042401	Total Aluminum (AI)	2023/07/21	102	80 - 120	105	80 - 120	<3.0	ug/L	2.5 (1)	20
B042401	Total Antimony (Sb)	2023/07/21	102	80 - 120	104	80 - 120	<0.50	ug/L		
B042401	Total Arsenic (As)	2023/07/21	102	80 - 120	101	80 - 120	<0.10	ug/L	3.2 (1)	20
B042401	Total Barium (Ba)	2023/07/21	98	80 - 120	99	80 - 120	<1.0	ug/L		
B042401	Total Beryllium (Be)	2023/07/21	99	80 - 120	101	80 - 120	<0.10	ug/L		
B042401	Total Bismuth (Bi)	2023/07/21	94	80 - 120	100	80 - 120	<1.0	ug/L		
B042401	Total Boron (B)	2023/07/21	99	80 - 120	102	80 - 120	<50	ug/L	NC (1)	20
B042401	Total Cadmium (Cd)	2023/07/21	99	80 - 120	100	80 - 120	<0.010	ug/L	NC (1)	20
B042401	Total Chromium (Cr)	2023/07/21	97	80 - 120	102	80 - 120	<1.0	ug/L	2.8 (1)	20
B042401	Total Cobalt (Co)	2023/07/21	94	80 - 120	98	80 - 120	<0.20	ug/L	NC (1)	20
B042401	Total Copper (Cu)	2023/07/21	91	80 - 120	97	80 - 120	<0.50	ug/L	2.8 (1)	20

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042401	Total Iron (Fe)	2023/07/21	100	80 - 120	100	80 - 120	<10	ug/L	0.0095 (1)	20
B042401	Total Lead (Pb)	2023/07/21	95	80 - 120	98	80 - 120	<0.20	ug/L	NC (1)	20
B042401	Total Lithium (Li)	2023/07/21	93	80 - 120	95	80 - 120	<2.0	ug/L		
B042401	Total Manganese (Mn)	2023/07/21	97	80 - 120	100	80 - 120	<1.0	ug/L	2.4 (1)	20
B042401	Total Molybdenum (Mo)	2023/07/21	NC	80 - 120	101	80 - 120	<1.0	ug/L	0.84 (1)	20
B042401	Total Nickel (Ni)	2023/07/21	94	80 - 120	99	80 - 120	<1.0	ug/L	3.7 (1)	20
B042401	Total Phosphorus (P)	2023/07/21	104	80 - 120	103	80 - 120	<10	ug/L		
B042401	Total Selenium (Se)	2023/07/21	98	80 - 120	101	80 - 120	<0.10	ug/L	1.9 (1)	20
B042401	Total Silicon (Si)	2023/07/21	NC	80 - 120	113	80 - 120	<100	ug/L		
B042401	Total Silver (Ag)	2023/07/21	99	80 - 120	100	80 - 120	<0.020	ug/L	NC (1)	20
B042401	Total Strontium (Sr)	2023/07/21	NC	80 - 120	99	80 - 120	<1.0	ug/L		
B042401	Total Thallium (TI)	2023/07/21	97	80 - 120	101	80 - 120	<0.010	ug/L		
B042401	Total Tin (Sn)	2023/07/21	99	80 - 120	101	80 - 120	<5.0	ug/L		
B042401	Total Titanium (Ti)	2023/07/21	101	80 - 120	102	80 - 120	<5.0	ug/L		
B042401	Total Uranium (U)	2023/07/21	102	80 - 120	103	80 - 120	<0.10	ug/L		
B042401	Total Vanadium (V)	2023/07/21	98	80 - 120	100	80 - 120	<5.0	ug/L		
B042401	Total Zinc (Zn)	2023/07/21	97	80 - 120	101	80 - 120	<5.0	ug/L	NC (1)	20
B042401	Total Zirconium (Zr)	2023/07/21	101	80 - 120	98	80 - 120	<0.10	ug/L		
B042658	рН	2023/07/21			100	97 - 103			0.096 (1)	N/A
B042663	Conductivity	2023/07/21			100	90 - 110	<2.0	uS/cm	0.27 (1)	10
B042664	Alkalinity (PP as CaCO3)	2023/07/21					<1.0	mg/L	NC (1)	20
B042664	Alkalinity (Total as CaCO3)	2023/07/21			98	80 - 120	<1.0	mg/L	0.36 (1)	20
B042664	Bicarbonate (HCO3)	2023/07/21					<1.0	mg/L	0.36 (1)	20
B042664	Carbonate (CO3)	2023/07/21					<1.0	mg/L	NC (1)	20
B042664	Hydroxide (OH)	2023/07/21					<1.0	mg/L	NC (1)	20
B042667	Orthophosphate (P)	2023/07/21	111	80 - 120	107	80 - 120	<0.0030	mg/L	NC (1)	20
B043056	Nitrate plus Nitrite (N)	2023/07/21	98 (2)	80 - 120	107	80 - 120	<0.020	mg/L	NC (3)	25
B043059	Nitrite (N)	2023/07/21	96 (2)	80 - 120	103	80 - 120	<0.0050	mg/L	NC (3)	20
B043887	Total Sulphide	2023/07/24	NC	80 - 120	100	80 - 120	<0.0018	mg/L		
B045215	Total Dissolved Solids	2023/07/25	101	80 - 120	108	80 - 120	<10	mg/L	3.3 (1)	20
B045377	Total Mercury (Hg)	2023/07/25	86	80 - 120	104	80 - 120	<0.0019	ug/L	NC (1)	20

Bureau Veritas Job #: C354963 Report Date: 2023/08/04

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B046614	Total Ammonia (N)	2023/07/25	124 (4)	80 - 120	109	80 - 120	<0.015	mg/L	NC (1)	20
B046927	Chloride (CI)	2023/07/25	NC (2)	80 - 120	101	80 - 120	<1.0	mg/L	0.82 (3)	20
B046927	Sulphate (SO4)	2023/07/25	NC (2)	80 - 120	105	80 - 120	<1.0	mg/L	0.13 (3)	20
B048276	Dissolved Calcium (Ca)	2023/07/26	NC (5)	80 - 120	100	80 - 120	<0.050	mg/L	2.3 (6)	20
B048276	Dissolved Magnesium (Mg)	2023/07/26	NC (5)	80 - 120	108	80 - 120	<0.050	mg/L	0.81 (6)	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [BUZ206-03]
- (3) Duplicate Parent ID [BUZ206-03]
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (5) Matrix Spike Parent ID [BUZ206-07]
- (6) Duplicate Parent ID [BUZ206-07]

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

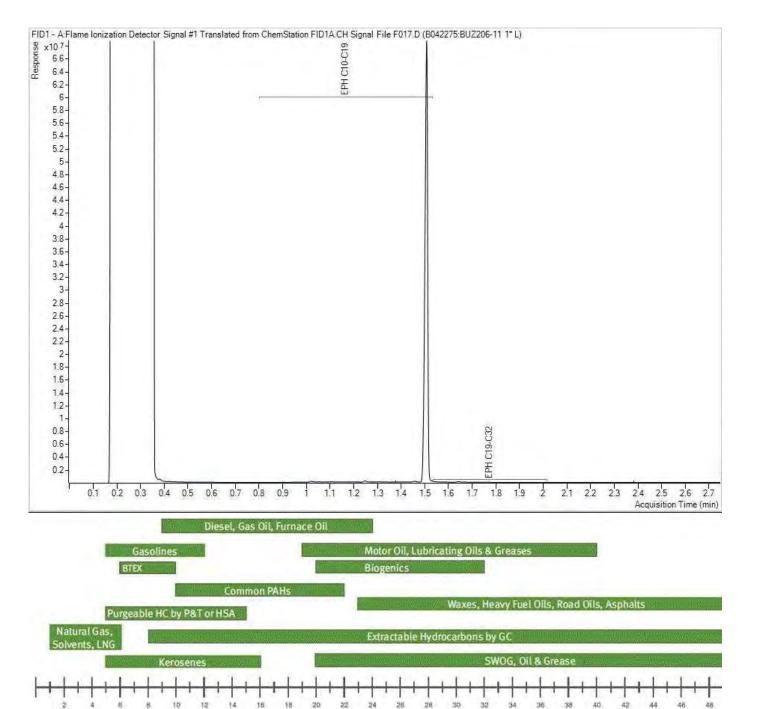
David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

ADDITIONAL COOLER TEMPERATURE RECORD

CHAIN-OF-CUSTODY RECORD

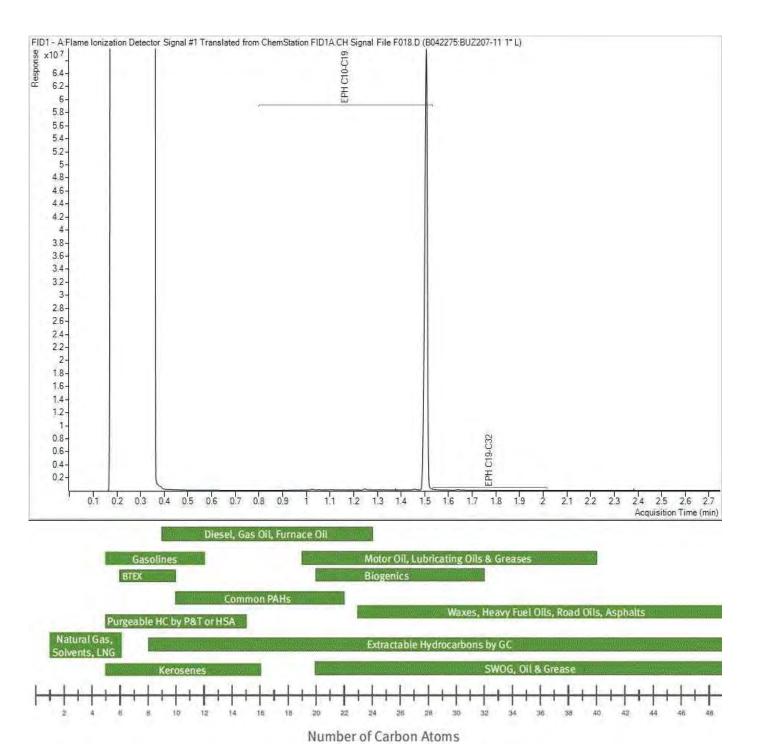

. CHAIN OF CUSTODY N	COOLEN ORSERV	A. I. I. I.						INIA	XXAM JOB#:						70
101	Clustopy shall	100	NO.	CENTER OF		_	-	1	ELISTOCK SENI.	113.1	90	COUNTRIO	-		-
of	PRESENT	1	-		70	-	-	4	Pagigas.	-	-	-	-	-	
gr	mtact		_	TESAN	2	4	41	1.1	entiaco	-		Tame	-		
of	DOC BYELSON	-	****	100	4	1	174	1 1	COMMENT	-	-		4		
E!	CHSTISTON SEAL	YES	- 00	COOLER TO	-	_	-	4 3	OUSTOON SEAL	Y65	80.	COULERO	-	-	-1
_ = ===================================	FIRSTIN	-		I I	_	-	-	4 1	nikitnii	-	-		-	-	mhess
54	BITACT	-	-	1000	9	4	16	111	estrict			TEMP			
of	ICE PRESENT	-	-	1,40		1	6	1	EX PRESENT		-	11.00		1	
Re .	CUSTODY SEAL	103	(41)	CDOLLS 4D	-	-	-	-	CUSTOO! SLAL	315	80	COOLER ID	-	2	. 3
	PREstat	1 00	100	COOCES		_	-	-	PRESONT	-	-	-		-	_
F.F.	SHIACO	1	-	TEMP				1	HTACI			TIME			
ol :	ICE PRESENT	-	-	TOWN !		100	1 4	1	NA PRESENT		-	1000			
ie e	CUSTODY SEAs	164	110	COOLERIS		-	-	4	O157007 564L	195	190	COOLEAN	-	1	
of	THESESS	-	-	The state of the s	_	-	-	-	PREJENT	1	-	T. Control		-	-
(4)	PROJECT	-	-	TEMP			1		BETACI	-	-	TOWN			
of	102 (1650)	-	-	11100		1 .	1 .		CE PRESENT	-	-	1100	- 1		
E.	CISTODY SEAL	165	-	COGLERIE	-	-	1	-	CUSTORY SEAL	TES	100	CODEA	-	1	-1
ci	PREMIE	1 115	901	PULLULAN NO.	-	-	-	-	THESENT.	101	40	Come	-	-	_
ie i	TJATH	-	-	TEMP		1		1	nether.	-	-	TURE			
of	SCLENESDIT.	-	-	TEMP.	1	1 -	1 2		NE PRESENT	-	-	mer	1 5	100	
e ·	GUSTODY SCAL	765	BO	CHONERIE	- 1	1 4	- 4	-1	CULYOUT SERI.	1 YKI	no	CODLEX	100	1	
of	mestin	71.5	110	I STORES	_	-	-	-1	PRESENT	100	110	COLOR	1	-	-
	INTACT	-	-	TEMP		1	i	1	WIAGI	-	-	Trace			1
of	TATESTAT	-	-	1 italie		,	1 .	4	CE PREMINI	-	-	-			1
ie	Costoby scar	1705	MILE	ECOCALIN II	-	1	-	-	DISTORY \$644	755	100	COOLER	10	-	_
of	PRESCH	1 00	90	COOCER	-	-	-	-1	PRESENT	1 752	-	- Paranta	1	-	
£	INTACE	-	-	-					HUACT	1	+	1046	1	1	10
of	D.R. PRESANT	-	-	TEMP		1 .	1 7	1	CE PRESENT	-	+	- 000	1 5	1 7	1
(É	CUSTODY SEAL	- 00	-	EDG-ES I	-	1 4	1 3	-	CUSTOMY SEAL	YES	140	COCKE	100	1.3	
pf .	yousent	RS	- NO	SCHOOL ST		-	-	-	PRESUIT	1 10	1 140	Leader	1	-	_
6	CAIW	-	-	-					PRESENT	-	+	TEMP			
of .	CLYMISTAT	-	-	TIMP	1 .	1 .	1 .			-	-	75040	1	115	1
ė.	CUSTODY SEAL	-	-	District of				-	INTERNET	-	940	CDGUI	-	1	_
of .	PREMISON SERE	165	MD	COOSES I	-	-	-	-	DUSTORY SEAL	717	-	y Jesses	-	-	-
Para Caraca Cara		-						-1	MESTAL	-	+	-			
of	Elaim	_	-	TOWN			1		MUNET	-	-	(234)	11	100	4.0
6	CEMISON	-	-	-	1	7	,	_	DECEMBER	-	-	T. Come	1	1	1
of lo	OUSTODY SEAL	155	NC	coorea	D.	-		_	CUSTORY SEAL	YE	3 30	o coon	1,50		-
	PARTEUR	-	-	4	1	1			PARMIN	-	-	-	1		1
te of	HIACT	_		TEME					DATAN	_	-	TEBA			1
The state of the s	CL/MSO/T		-	-	1	1 4		_	ICE VILLSENT	_	_	-	1	1	1
	RECEIVED BY	516N &	PRIN	(T)			_	-	DATE	(YYYY	(/MN	1/DD)	TIM	E (HH:N	IIVII
	120	10	0		T						_	-		_	_
	Path	blul	0		1	ENE	7 000	0	CAOILI 2	063/	071	20	111	182	0

		WYDICE TO				fispon in	former	im						Project l	desire	0		-	Laborator	ry Use On	ly
any Name	#163 GHD L			Company Name	- GHD	umit	ed.					Quement.	- 1	C30090					Bureau Vertan Job #		Buttly Orde
o Name	AP Invoices -			Corned Name	Stephanie I	Berton						* O.F		735-002				_			HERDON
19	455 PHILLIP S WATERLOO	THE RESIDENCE OF THE PARTY OF T	_	Atten			_		_	_		Promit #		1122268		_		-	Chain Of Controlly Resort	\rightarrow	Project Man
	(519) 884-051		25-1394	Prone				Fact			_	Project Name Comit		Leachen		-		1	CHARLEST BELLE REPORT	100	
	APinvoices-73			Email	Nationa/ED	DSuppor	@ma	oxam c	s:stepher	nia berto	4.500.0	Sertied by	- 3	KH	asver				C#064E71-01-01	110	Minory Amber
Auto y Co	Term.			Special	elminine					PAGE	CYRC RE	OVERTED	PLEASE IS	SPECIFIC	1				Turneound Time ((TAT) Reque	red
CUR			R	In- Atus	L Harris	1 and	11		pe				2					-	Primi provide advince e	contact the huntry	projude
			207	Hes tileo	FIREACE	A CINO	Ш	8	100			1	PA		PAMs		1 ()		tanderil) TAT		
COME			DI	reserved	tai			N S	5		9	90	200		72				and A Rush TAT is nid samplind.		
NC Veni	or County		w	reserved dicate 120th	don		IN (A) PP	SO4, NO2, NO3,	H2S, Un-tonize total		with CV Hg (NO	EQ.	38		nache				AT + 5.7 (Weeking days for most is a Standard TA7 for contain finds a		
-			100	voott	6		(2)	28	TE		2	50	美田	2	aubtr 4			days - stock	ed your Fried Manager to shin	19	-
				1-Di	~~		pea	75.40	Total ed on	opp	Si.	Oxyge	-	gues	with		5		his Rush TAT (If applies to entir	TV automission	sk -
							Ē	S.P.	hide. To	ž	# 12		3 5	Hay	Ŧ		Bugg	X SIAY	2004 X 3004	Dam Require	4
LAMPE	PR MOINT BE KEPT O	OOL (+ 10°C) FROM TIME OF SAA	are out course	nel success are man	E ALI OFFICE		1	PO4, TDS.	Total Sulph (as H25) - t	delot) N-einan	Total Metals w	TOTA	+CO3	Dissolved Hardness	гернинерн	표	Temperature	Mush Cont	787700 -		-
	And the second			ALL PORT TO BUS	ENG VERTING		3	Cond.	五五	BILLI	38	5	000 HIII	280	£	D.	799	k of Dalleys	perpo	(cuf)	leti-fi
Serpi	Barconi Lanii.	Sample (Locatori) (Ministrue	-		Time Survival	Mary	2	ű ż	23	₹	유로	B-	07	ă	=	14	W.				
	W	-11222680-180	723 1/1	OI BOHES	1650	6	X	X	X	X	X	1X	X	X	X	6.32	24-04				
				V . V	_		10	1	V	V	V	11	V	1	V	6.32	24.04				
	MF.	1222680-180723-1	(H-0Z)	18101123	1700	W	X	1	N	1	1	X	\wedge	X	1	0-16	rtor				
						100		U. L		11				11.0		111		Ļī —			
							+														
													0.11						and the same of		
_							+		-								-	1	三人	$W_{a,b}$	(AMPANA)
																			8358680	雅州	
																			C354963 C	O.C.	COLUMN THE COL
_							+					1								-	
_			_			-	+				1	-									
/2 L/	DOWN LIG		Date (YVAMA)			REC	OVED 6	f: (Signet	unitriet)			Dela: (YY)	-	Time / / / m	_	s seed and exhaulted	Facilities	-	Late Uses Circly		of that or Da
	LICEDENT 1 1-14	3 100 400	14/07/2	3 1800	T.No.	N	~	F	_	_	_	23.07	17	11:0	4			Tim	5 y	Пи	400

Bureau Veritas Job #: C354963 Report Date: 2023/08/04 Bureau Veritas Sample: BUZ206 **GHD Limited**

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WL-11222680-180723-KH-01

EPH in Water when PAH required Chromatogram


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Number of Carbon Atoms

Bureau Veritas Job #: C354963 Report Date: 2023/08/04 Bureau Veritas Sample: BUZ207 **GHD Limited**

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WL-11222680-180723-KH-02

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL Your C.O.C. #: 694569-02-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/07/28

Report #: R3373120 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C354973 Received: 2023/07/19, 11:02

Sample Matrix: Water # Samples Received: 7

Date Date **Analyses Quantity Extracted** Analyzed **Laboratory Method Analytical Method** Alkalinity @25C (pp, total), CO3,HCO3,OH 6 N/A 2023/07/20 BBY6SOP-00026 SM 24 2320 B m Alkalinity @25C (pp, total), CO3,HCO3,OH 1 N/A 2023/07/28 BBY6SOP-00026 SM 24 2320 B m Chloride/Sulphate by Auto Colourimetry 2 2023/07/24 BBY6SOP-00011 / SM24-4500-CI/SO4-E m N/A BBY6SOP-00017 Chloride/Sulphate by Auto Colourimetry 4 N/A 2023/07/25 BBY6SOP-00011 / SM24-4500-CI/SO4-E m BBY6SOP-00017 Chloride/Sulphate by Auto Colourimetry 1 N/A 2023/07/27 BBY6SOP-00011 / SM24-4500-CI/SO4-E m BBY6SOP-00017 2023/07/20 BBY6SOP-00026 N/A SM 24 2510 B m Conductivity @25C 6 2023/07/28 BBY6SOP-00026 SM 24 2510 B m Conductivity @25C 1 N/A Sulphide (as H2S) (1) 7 N/A 2023/07/25 Auto Calc Un-ionized Hydrogen Sulphide as S Calc (1) 7 N/A 2023/07/25 Hardness (calculated as CaCO3) 6 N/A 2023/07/24 BBY WI-00033 Auto Calc Hardness (calculated as CaCO3) 2023/07/27 BBY WI-00033 1 N/A Auto Calc Mercury (Dissolved) by CV (2) 7 2023/07/27 2023/07/28 AB SOP-00084 BCMOE BCLM Oct2013 m EPH in Water when PAH required 2 2023/07/21 2023/07/21 BBY8SOP-00029 BCMOE BCLM Sep2017 m EPH in Water when PAH required 5 2023/07/24 2023/07/24 BBY8SOP-00029 BCMOE BCLM Sep2017 m Na, K, Ca, Mg, S by CRC ICPMS (diss.) 6 N/A 2023/07/24 BBY WI-00033 Auto Calc Na, K, Ca, Mg, S by CRC ICPMS (diss.) 1 N/A 2023/07/27 BBY WI-00033 Auto Calc Elements by CRC ICPMS (dissolved) (2) N/A 6 2023/07/22 BBY7SOP-00002 EPA 6020b R2 m Elements by CRC ICPMS (dissolved) (2) 2023/07/26 BBY7SOP-00002 1 N/A EPA 6020b R2 m 7 Ammonia-N (Total) N/A 2023/07/25 AB SOP-00007 SM 24 4500 NH3 A G m Nitrate + Nitrite (N) 6 N/A 2023/07/20 BBY6SOP-00010 SM 23 4500-NO3-I m Nitrate + Nitrite (N) 1 N/A 2023/07/27 BBY6SOP-00010 SM 23 4500-NO3- I m Nitrite (N) by CFA 6 2023/07/20 BBY6SOP-00010 SM 23 4500-NO3-I m N/A Nitrite (N) by CFA 1 2023/07/27 BBY6SOP-00010 SM 23 4500-NO3-I m N/A 6 N/A 2023/07/21 BBY WI-00033 Auto Calc Nitrogen - Nitrate (as N) Nitrogen - Nitrate (as N) 1 N/A 2023/07/27 BBY WI-00033 Auto Calc PAH in Water by GC/MS (SIM) 2 2023/07/21 2023/07/22 BBY8SOP-00021 BCMOE BCLM Jul2017m 5 PAH in Water by GC/MS (SIM) 2023/07/24 2023/07/24 BBY8SOP-00021 BCMOE BCLM Jul2017m pH @25°C (3) 5 N/A 2023/07/20 BBY6SOP-00026 SM 24 4500-H+ B m SM 24 4500-H+ B m pH @25°C (3) 1 N/A 2023/07/21 BBY6SOP-00026

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL Your C.O.C. #: 694569-02-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/07/28

Report #: R3373120 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C354973 Received: 2023/07/19, 11:02

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
pH @25°C (3)	1	N/A	2023/07/28	BBY6SOP-00026	SM 24 4500-H+ B m
Orthophosphate by Konelab (4)	6	N/A	2023/07/20	BBY6SOP-00013	SM 24 4500-P E m
Orthophosphate by Konelab (4)	1	N/A	2023/07/27	BBY6SOP-00013	SM 24 4500-P E m
Total Sulphide (1)	7	N/A	2023/07/25	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue)	3	2023/07/21	2023/07/24	BBY6SOP-00033	SM 24 2540 C m
Total Dissolved Solids (Filt. Residue)	4	2023/07/24	2023/07/25	BBY6SOP-00033	SM 24 2540 C m
EPH less PAH in Water by GC/FID (5)	2	N/A	2023/07/24	BBY WI-00033	Auto Calc
EPH less PAH in Water by GC/FID (5)	3	N/A	2023/07/25	BBY WI-00033	Auto Calc
EPH less PAH in Water by GC/FID (5)	2	N/A	2023/07/26	BBY WI-00033	Auto Calc
Field pH	7	N/A	2023/07/20		
Field Temperature	7	N/A	2023/07/20		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8

Your P.O. #: 735-002640-3 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL Your C.O.C. #: 694569-02-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/07/28

Report #: R3373120 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C354973

Received: 2023/07/19, 11:02

- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas endeavours to analyze samples as soon as possible after receipt.
- (4) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (5) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene) HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Encryption Key

Bureau Veritas

28 Jul 2023 19:11:23

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist–Emergency Spill Response Email: Brody.Andersen@bureauveritas.com Phone# (780)577-7120

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ261	BUZ261		BUZ262		
Sampling Date		2023/07/18 10:40	2023/07/18 10:40		2023/07/18 12:10		
COC Number		694569-02-01	694569-02-01		694569-02-01		
	UNITS	WG-11222680-180723 -KH-05	WG-11222680-180723 -KH-05 Lab-Dup	QC Batch	WG-11222680-180723 -KH-06	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	N/A	B041712	0.0055	0.0050	B050812
Calculated Parameters	•						
Nitrate (N)	mg/L	0.365	N/A	B040742	0.190	0.020	B049848
Sulphide (as H2S)	mg/L	<0.0020	N/A	B040445	<0.0020	0.0020	B040445
Field Parameters				•			
Field pH	рН	7.70	N/A	ONSITE	7.65	N/A	ONSITE
Field Temperature	°C	16.92	N/A	ONSITE	16.90	N/A	ONSITE
Misc. Inorganics				•		•	
Conductivity	uS/cm	220	N/A	B041769	130	2.0	B050736
рН	рН	7.76	N/A	B041758	7.15	N/A	B050725
Total Dissolved Solids	mg/L	130	N/A	B042634	54	10	B042634
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	N/A	B041770	<1.0	1.0	B050737
Alkalinity (Total as CaCO3)	mg/L	74	N/A	B041770	41	1.0	B050737
Bicarbonate (HCO3)	mg/L	90	N/A	B041770	50	1.0	B050737
Carbonate (CO3)	mg/L	<1.0	N/A	B041770	<1.0	1.0	B050737
Hydroxide (OH)	mg/L	<1.0	N/A	B041770	<1.0	1.0	B050737
Total Sulphide	mg/L	<0.0018	<0.0018	B046711	<0.0018 (1)	0.0018	B046711
Chloride (CI)	mg/L	16	N/A	B045835	12	1.0	B050697
Sulphate (SO4)	mg/L	6.6	N/A	B045835	3.1	1.0	B050697
Nutrients							
Total Ammonia (N)	mg/L	<0.015	N/A	B046614	<0.015	0.015	B046614
Orthophosphate (P)	mg/L	0.0099	N/A	B041593	0.0040	0.0030	B050548
Nitrate plus Nitrite (N)	mg/L	0.365	N/A	B041707	0.195	0.020	B050809

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Matrix spike exceeds acceptance limits due to matrix interference.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ262		BUZ263		BUZ264		
Sampling Date		2023/07/18		2023/07/18		2023/07/18		
Jamping Date		12:10		13:45		14:00		
COC Number		694569-02-01		694569-02-01		694569-02-01		
	UNITS	WG-11222680-180723 -KH-06 Lab-Dup	QC Batch	WG-11222680-180723 -KH-07	QC Batch	WG-11222680-180723 -KH-08	RDL	QC Batch
ANIONS		•						
Nitrite (N)	mg/L	N/A	B050812	<0.0050	B041712	<0.0050	0.0050	B041712
Calculated Parameters			•		•			
Nitrate (N)	mg/L	N/A	B049848	0.720	B040742	0.082	0.020	B040742
Sulphide (as H2S)	mg/L	N/A	B040445	<0.0020	B040445	<0.0020	0.0020	B040445
Field Parameters	•		•		•		•	
Field pH	рН	N/A	ONSITE	6.99	ONSITE	8.59	N/A	ONSITE
Field Temperature	°C	N/A	ONSITE	14.96	ONSITE	15.95	N/A	ONSITE
Misc. Inorganics								
Conductivity	uS/cm	N/A	B050736	200	B041769	73	2.0	B041769
рН	рН	N/A	B050725	7.54	B041758	7.61	N/A	B041758
Total Dissolved Solids	mg/L	N/A	B042634	120	B042634	56	10	B045215
Anions								
Alkalinity (PP as CaCO3)	mg/L	N/A	B050737	<1.0	B041770	<1.0	1.0	B041770
Alkalinity (Total as CaCO3)	mg/L	N/A	B050737	77	B041770	32	1.0	B041770
Bicarbonate (HCO3)	mg/L	N/A	B050737	94	B041770	40	1.0	B041770
Carbonate (CO3)	mg/L	N/A	B050737	<1.0	B041770	<1.0	1.0	B041770
Hydroxide (OH)	mg/L	N/A	B050737	<1.0	B041770	<1.0	1.0	B041770
Total Sulphide	mg/L	N/A	B046711	<0.0018	B046711	<0.0018	0.0018	B046711
Chloride (CI)	mg/L	12	B050697	6.3	B045835	<1.0	1.0	B045835
Sulphate (SO4)	mg/L	3.0	B050697	8.4	B045835	2.7	1.0	B045835
Nutrients								
Total Ammonia (N)	mg/L	N/A	B046614	<0.015	B046614	<0.015	0.015	B046614
Orthophosphate (P)	mg/L	N/A	B050548	0.0035	B041593	0.026	0.0030	B041593
Nitrate plus Nitrite (N)	mg/L	N/A	B050809	0.720	B041707	0.082	0.020	B041707
		<u></u>		·		·		

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Report Date: 2023/07/28

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ264			BUZ265		BUZ266		
Sampling Date		2023/07/18			2023/07/18		2023/07/19		
Jamping Date		14:00			15:30		08:30		
COC Number		694569-02-01			694569-02-01		694569-02-01		
		WG-11222680-180723			WG-11222680-180723		WG-11222680-180723		
	UNITS	-KH-08	RDL	QC Batch	-KH-09	RDL	-KH-10	RDL	QC Batch
		Lab-Dup							
ANIONS									
Nitrite (N)	mg/L	N/A	0.0050	B041712	<0.0050	0.0050	<0.0050	0.0050	B041712
Calculated Parameters									
Nitrate (N)	mg/L	N/A	0.020	B040742	2.66	0.10	0.901	0.020	B040742
Sulphide (as H2S)	mg/L	N/A	0.0020	B040445	<0.0020	0.0020	<0.0020	0.0020	B040445
Field Parameters									
Field pH	рН	N/A	N/A	ONSITE	7.37	N/A	6.99	N/A	ONSITE
Field Temperature	°C	N/A	N/A	ONSITE	15.26	N/A	14.59	N/A	ONSITE
Misc. Inorganics									
Conductivity	uS/cm	N/A	2.0	B041769	130	2.0	500	2.0	B041769
рН	рН	N/A	N/A	B041758	7.14	N/A	7.49	N/A	B041758
Total Dissolved Solids	mg/L	N/A	10	B045215	100	10	370	10	B045215
Anions									
Alkalinity (PP as CaCO3)	mg/L	N/A	1.0	B041770	<1.0	1.0	<1.0	1.0	B041770
Alkalinity (Total as CaCO3)	mg/L	N/A	1.0	B041770	44	1.0	94	1.0	B041770
Bicarbonate (HCO3)	mg/L	N/A	1.0	B041770	54	1.0	110	1.0	B041770
Carbonate (CO3)	mg/L	N/A	1.0	B041770	<1.0	1.0	<1.0	1.0	B041770
Hydroxide (OH)	mg/L	N/A	1.0	B041770	<1.0	1.0	<1.0	1.0	B041770
Total Sulphide	mg/L	N/A	0.0018	B046711	<0.0018	0.0018	<0.0018	0.0018	B046711
Chloride (CI)	mg/L	<1.0	1.0	B045835	1.9	1.0	86	1.0	B045835
Sulphate (SO4)	mg/L	2.6	1.0	B045835	8.6	1.0	6.4	1.0	B045835
Nutrients									
Total Ammonia (N)	mg/L	N/A	0.015	B046614	<0.015	0.015	<0.015	0.015	B046617
Orthophosphate (P)	mg/L	0.027	0.0030	B041593	0.0047	0.0030	0.0075	0.0030	B041593
Nitrate plus Nitrite (N)	mg/L	N/A	0.020	B041707	2.66	0.10	0.901	0.020	B041707
			•			•			

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BUZ267	BUZ267		
Sampling Date		2023/07/19 09:30	2023/07/19 09:30		
COC Number		694569-02-01	694569-02-01		
	UNITS	WG-11222680-180723 -KH-11	WG-11222680-180723 -KH-11 Lab-Dup	RDL	QC Batch
ANIONS					
Nitrite (N)	mg/L	<0.0050	N/A	0.0050	B041712
Calculated Parameters			I	ı	Į.
Nitrate (N)	mg/L	<0.020	N/A	0.020	B040742
Sulphide (as H2S)	mg/L	0.0028	N/A	0.0020	B040445
Field Parameters		•	1	ı	Į.
Field pH	рН	0	N/A	N/A	ONSITE
Field Temperature	°C	0	N/A	N/A	ONSITE
Misc. Inorganics	,				•
Conductivity	uS/cm	<2.0	<2.0	2.0	B041769
рН	рН	5.48	5.47	N/A	B042566
Total Dissolved Solids	mg/L	<10	N/A	10	B045215
Anions	•			•	•
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	1.0	B041770
Alkalinity (Total as CaCO3)	mg/L	<1.0	<1.0	1.0	B041770
Bicarbonate (HCO3)	mg/L	<1.0	<1.0	1.0	B041770
Carbonate (CO3)	mg/L	<1.0	<1.0	1.0	B041770
Hydroxide (OH)	mg/L	<1.0	<1.0	1.0	B041770
Total Sulphide	mg/L	0.0027	N/A	0.0018	B046711
Chloride (Cl)	mg/L	<1.0	N/A	1.0	B045835
Sulphate (SO4)	mg/L	<1.0	N/A	1.0	B045835
Nutrients					
Total Ammonia (N)	mg/L	<0.015	N/A	0.015	B046617
Orthophosphate (P)	mg/L	<0.0030	N/A	0.0030	B041593
Nitrate plus Nitrite (N)	mg/L	<0.020	N/A	0.020	B041707
RDL = Reportable Detection Lab-Dup = Laboratory Initiat N/A = Not Applicable		cate			

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		BUZ261	BUZ262		BUZ263		
Sampling Date		2023/07/18	2023/07/18		2023/07/18		
Sampling Date		10:40	12:10		13:45		
COC Number		694569-02-01	694569-02-01		694569-02-01		
	UNITS	WG-11222680-180723	WG-11222680-180723	QC Batch	WG-11222680-180723	RDL	QC Batch
	UNITS	-KH-05	-KH-06	QC Battii	-KH-07	NDL	QC Batti
Polycyclic Aromatics							
Naphthalene	ug/L	<0.10	<0.10	B042787	<0.10	0.10	B044779
Acenaphthene	ug/L	<0.050	<0.050	B042787	<0.050	0.050	B044779
Fluorene	ug/L	<0.050	<0.050	B042787	<0.050	0.050	B044779
Phenanthrene	ug/L	<0.050	<0.050	B042787	<0.050	0.050	B044779
Anthracene	ug/L	<0.010	<0.010	B042787	<0.010	0.010	B044779
Acridine	ug/L	<0.050	<0.050	B042787	<0.050	0.050	B044779
Fluoranthene	ug/L	<0.020	<0.020	B042787	<0.020	0.020	B044779
Pyrene	ug/L	<0.020	<0.020	B042787	<0.020	0.020	B044779
Benzo(a)anthracene	ug/L	<0.010	<0.010	B042787	<0.010	0.010	B044779
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	B042787	<0.0050	0.0050	B044779
Surrogate Recovery (%)							
D10-ANTHRACENE (sur.)	%	83	85	B042787	91	N/A	B044779
D8-ACENAPHTHYLENE (sur.)	%	83	84	B042787	90	N/A	B044779
D8-NAPHTHALENE (sur.)	%	74	76	B042787	84	N/A	B044779
TERPHENYL-D14 (sur.)	%	78	78	B042787	79	N/A	B044779

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

		I					
Bureau Veritas ID		BUZ264		BUZ265	BUZ266		
Sampling Date		2023/07/18		2023/07/18	2023/07/19		
Sampling Date		14:00		15:30	08:30		
COC Number		694569-02-01		694569-02-01	694569-02-01		
	UNITS	WG-11222680-180723	QC Batch	WG-11222680-180723	WG-11222680-180723	RDL	QC Batch
	UNITS	-KH-08	QC Battii	-KH-09	-KH-10	NDL	QC Battii
Polycyclic Aromatics							
Naphthalene	ug/L	<0.10	B044779	<0.10	<0.10	0.10	B045204
Acenaphthene	ug/L	<0.050	B044779	<0.050	<0.050	0.050	B045204
Fluorene	ug/L	<0.050	B044779	<0.050	<0.050	0.050	B045204
Phenanthrene	ug/L	<0.050	B044779	<0.050	<0.050	0.050	B045204
Anthracene	ug/L	<0.010	B044779	<0.010	<0.010	0.010	B045204
Acridine	ug/L	<0.050	B044779	<0.050	<0.050	0.050	B045204
Fluoranthene	ug/L	<0.020	B044779	<0.020	<0.020	0.020	B045204
Pyrene	ug/L	<0.020	B044779	<0.020	0.030	0.020	B045204
Benzo(a)anthracene	ug/L	<0.010	B044779	<0.010	<0.010	0.010	B045204
Benzo(a)pyrene	ug/L	<0.0050	B044779	<0.0050	0.013 (1)	0.0050	B045204
Surrogate Recovery (%)							
D10-ANTHRACENE (sur.)	%	91	B044779	94	90	N/A	B045204
D8-ACENAPHTHYLENE (sur.)	%	89	B044779	91	91	N/A	B045204
D8-NAPHTHALENE (sur.)	%	82	B044779	76	72	N/A	B045204
TERPHENYL-D14 (sur.)	%	79	B044779	103	96	N/A	B045204

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Tentatively identified result and may be potentially biased high due to matrix interference.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		BUZ267		
Sampling Date		2023/07/19		
oumpining Dutc		09:30		
COC Number		694569-02-01		
	UNITS	WG-11222680-180723	RDL	QC Batch
	UNITS	-KH-11	KDL	QC Battii
Polycyclic Aromatics				
Naphthalene	ug/L	<0.10	0.10	B045204
Acenaphthene	ug/L	<0.050	0.050	B045204
Fluorene	ug/L	<0.050	0.050	B045204
Phenanthrene	ug/L	<0.050	0.050	B045204
Anthracene	ug/L	<0.010	0.010	B045204
Acridine	ug/L	<0.050	0.050	B045204
Fluoranthene	ug/L	<0.020	0.020	B045204
Pyrene	ug/L	<0.020	0.020	B045204
Benzo(a)anthracene	ug/L	<0.010	0.010	B045204
Benzo(a)pyrene	ug/L	<0.0050	0.0050	B045204
Surrogate Recovery (%)	•	•		
D10-ANTHRACENE (sur.)	%	92	N/A	B045204
D8-ACENAPHTHYLENE (sur.)	%	88	N/A	B045204
D8-NAPHTHALENE (sur.)	%	67	N/A	B045204
TERPHENYL-D14 (sur.)	%	100	N/A	B045204
RDL = Reportable Detection L	imit			
N/A = Not Applicable				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

TOTAL PETROLEUM HYDROCARBONS (WATER)

Bureau Veritas ID		BUZ261	BUZ262		BUZ263		
Sampling Date		2023/07/18 10:40	2023/07/18 12:10		2023/07/18 13:45		
COC Number		694569-02-01	694569-02-01		694569-02-01		
	UNITS	WG-11222680-180723 -KH-05	WG-11222680-180723 -KH-06	QC Batch	WG-11222680-180723 -KH-07	RDL	QC Batch
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	B041128	<0.20	0.20	B041128
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	B041128	<0.20	0.20	B041128
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	<0.20	<0.20	B042796	<0.20	0.20	B044780
EPH (C19-C32)	mg/L	<0.20	<0.20	B042796	<0.20	0.20	B044780
Surrogate Recovery (%)	-			•			
O-TERPHENYL (sur.)	%	98	96	B042796	97	N/A	B044780
RDL = Reportable Detection	Limit			-			
N/A = Not Applicable							
Bureau Veritas ID		BUZ264	BUZ	265	BUZ266		
<u> </u>		2022/07/40	2022/	07/40	2022/07/40		

Bureau Veritas ID		BUZ264		BUZ265	BUZ266				
Sampling Date		2023/07/18		2023/07/18	2023/07/19				
Sampling Date		14:00		15:30	08:30				
COC Number		694569-02-01		694569-02-01	694569-02-01				
	UNITS	WG-11222680-180723	QC Batch	WG-11222680-180723	WG-11222680-180723	RDL	QC Batch		
	UNITS	-KH-08	QC Battii	-KH-09	-KH-10	KDL	QC Battii		
Calculated Parameters									
LEPH (C10-C19 less PAH)	mg/L	<0.20	B041128	<0.20	<0.20	0.20	B041128		
HEPH (C19-C32 less PAH)	mg/L	<0.20	B041128	<0.20	0.29	0.20	B041128		
Ext. Pet. Hydrocarbon	•					•			
EPH (C10-C19)	mg/L	<0.20	B044780	<0.20	<0.20	0.20	B045218		
EPH (C19-C32)	mg/L	<0.20	B044780	<0.20	0.29	0.20	B045218		
Surrogate Recovery (%)									
O-TERPHENYL (sur.)	%	95	B044780	94	86	N/A	B045218		
RDL = Reportable Detection	RDL = Reportable Detection Limit								

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

TOTAL PETROLEUM HYDROCARBONS (WATER)

	_							
Bureau Veritas ID		BUZ267						
Sampling Date		2023/07/19 09:30						
COC Number		694569-02-01						
	UNITS	WG-11222680-180723 -KH-11	RDL	QC Batch				
Calculated Parameters								
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	B041128				
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	B041128				
Ext. Pet. Hydrocarbon	•		•	•				
EPH (C10-C19)	mg/L	<0.20	0.20	B045218				
EPH (C19-C32)	mg/L	<0.20	0.20	B045218				
Surrogate Recovery (%)	•							
O-TERPHENYL (sur.)	%	95	N/A	B045218				
RDL = Reportable Detection Limit								
N/A = Not Applicable								

Calculated Parameters

Total Un-ionized Hydrogen Sulfide as S

RDL = Reportable Detection Limit

Total Un-ionized Hydrogen Sulfide as H2S

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

0.0050

0.0050

<0.0050

<0.0050

B041137

B041137

MISCELLANEOUS (WATER)

Bureau Veritas ID		BUZ261	BUZ262	BUZ263		
Sampling Date		2023/07/18	2023/07/18	2023/07/18		
Sampling Date		10:40	12:10	13:45		
COC Number		694569-02-01	694569-02-01	694569-02-01		
	UNITS	WG-11222680-180723	WG-11222680-180723	WG-11222680-180723	RDL	QC Batch
	UNITS	-KH-05	-KH-06	-KH-07	KDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B041137
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B041137
RDL = Reportable Detection Limit						
Bureau Veritas ID		BUZ264	BUZ265	BUZ266		
Complian Date		2023/07/18	2023/07/18	2023/07/19		
Sampling Date		14:00	15:30	08:30		
COC Number		694569-02-01	694569-02-01	694569-02-01		
	LINUTC	WG-11222680-180723	WG-11222680-180723	WG-11222680-180723	DDI	OC Batalo
	UNITS	-KH-08	-KH-09	-KH-10	RDL	QC Batch

Bureau Veritas ID		BUZ267		
Sampling Date		2023/07/19 09:30		
COC Number		694569-02-01		
	UNITS	WG-11222680-180723 -KH-11	RDL	QC Batch
Calculated Parameters				
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	0.0050	B041137
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	0.0050	B041137
RDL = Reportable Detection Limit				·

<0.0050

<0.0050

<0.0050

<0.0050

mg/L

mg/L

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BUZ261	BUZ261		BUZ262		
Sampling Date		2023/07/18	2023/07/18		2023/07/18		
		10:40	10:40		12:10		
COC Number		694569-02-01	694569-02-01		694569-02-01		
	UNITS	WG-11222680-180723 -KH-05	WG-11222680-180723 -KH-05 Lab-Dup	QC Batch	WG-11222680-180723 -KH-06	RDL	QC Batch
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	87.7	N/A	B040635	30.7	0.50	B047969
Elements		1		L.			Į.
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	B050172	<0.0019	0.0019	B050172
Dissolved Metals by ICPMS		1		L.			Į.
Dissolved Aluminum (Al)	ug/L	<3.0	N/A	B042783	3.6	3.0	B049143
Dissolved Antimony (Sb)	ug/L	<0.50	N/A	B042783	<0.50	0.50	B049143
Dissolved Arsenic (As)	ug/L	0.23	N/A	B042783	<0.10	0.10	B049143
Dissolved Barium (Ba)	ug/L	5.3	N/A	B042783	<1.0	1.0	B049143
Dissolved Beryllium (Be)	ug/L	<0.10	N/A	B042783	<0.10	0.10	B049143
Dissolved Bismuth (Bi)	ug/L	<1.0	N/A	B042783	<1.0	1.0	B049143
Dissolved Boron (B)	ug/L	<50	N/A	B042783	<50	50	B049143
Dissolved Cadmium (Cd)	ug/L	<0.010	N/A	B042783	<0.010	0.010	B049143
Dissolved Chromium (Cr)	ug/L	<1.0	N/A	B042783	<1.0	1.0	B049143
Dissolved Cobalt (Co)	ug/L	<0.20	N/A	B042783	<0.20	0.20	B049143
Dissolved Copper (Cu)	ug/L	<0.20	N/A	B042783	<0.20	0.20	B049143
Dissolved Iron (Fe)	ug/L	<5.0	N/A	B042783	<5.0	5.0	B049143
Dissolved Lead (Pb)	ug/L	<0.20	N/A	B042783	<0.20	0.20	B049143
Dissolved Lithium (Li)	ug/L	<2.0	N/A	B042783	<2.0	2.0	B049143
Dissolved Manganese (Mn)	ug/L	<1.0	N/A	B042783	<1.0	1.0	B049143
Dissolved Molybdenum (Mo)	ug/L	<1.0	N/A	B042783	<1.0	1.0	B049143
Dissolved Nickel (Ni)	ug/L	<1.0	N/A	B042783	<1.0	1.0	B049143
Dissolved Phosphorus (P)	ug/L	13	N/A	B042783	<10	10	B049143
Dissolved Selenium (Se)	ug/L	0.19	N/A	B042783	<0.10	0.10	B049143
Dissolved Silicon (Si)	ug/L	8440	N/A	B042783	3810	100	B049143
Dissolved Silver (Ag)	ug/L	<0.020	N/A	B042783	<0.020	0.020	B049143
Dissolved Strontium (Sr)	ug/L	42.3	N/A	B042783	16.1	1.0	B049143
Dissolved Thallium (TI)	ug/L	<0.010	N/A	B042783	<0.010	0.010	B049143
Dissolved Tin (Sn)	ug/L	<5.0	N/A	B042783	<5.0	5.0	B049143

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BUZ261	BUZ261		BUZ262		
Sampling Date		2023/07/18 10:40	2023/07/18 10:40		2023/07/18 12:10		
COC Number		694569-02-01	694569-02-01		694569-02-01		
	UNITS	WG-11222680-180723 -KH-05	WG-11222680-180723 -KH-05 Lab-Dup	QC Batch	WG-11222680-180723 -KH-06	RDL	QC Batch
Dissolved Uranium (U)	ug/L	<0.10	N/A	B042783	<0.10	0.10	B049143
Dissolved Vanadium (V)	ug/L	<5.0	N/A	B042783	<5.0	5.0	B049143
Dissolved Zinc (Zn)	ug/L	<5.0	N/A	B042783	<5.0	5.0	B049143
Dissolved Zirconium (Zr)	ug/L	<0.10	N/A	B042783	<0.10	0.10	B049143
Dissolved Calcium (Ca)	mg/L	27.8	N/A	B040637	10.1	0.050	B048034
Dissolved Magnesium (Mg)	mg/L	4.45	N/A	B040637	1.35	0.050	B048034
Dissolved Potassium (K)	mg/L	0.405	N/A	B040637	0.139	0.050	B048034
Dissolved Sodium (Na)	mg/L	6.10	N/A	B040637	2.07	0.050	B048034
Dissolved Sulphur (S)	mg/L	<3.0	N/A	B040637	<3.0	3.0	B048034

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Report Date: 2023/07/28

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

Bureau Veritas ID		BUZ263	BUZ264	BUZ265	BUZ266		
		2023/07/18	2023/07/18	2023/07/18	2023/07/19		
Sampling Date		13:45	14:00	15:30	08:30		
COC Number		694569-02-01	694569-02-01	694569-02-01	694569-02-01		
	UNITS	WG-11222680-180723	WG-11222680-180723	WG-11222680-180723	WG-11222680-180723	RDL	QC Batch
	ONITS	-KH-07	-KH-08	-KH-09	-KH-10	NDL	QC Batch
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	85.9	32.5	49.2	155	0.50	B040635
Elements						•	•
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	<0.0019	<0.0019	0.0019	B050172
Dissolved Metals by ICPMS						•	•
Dissolved Aluminum (Al)	ug/L	41.3	4.1	<3.0	6.9	3.0	B042783
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	B042783
Dissolved Arsenic (As)	ug/L	<0.10	0.83	<0.10	0.20	0.10	B042783
Dissolved Barium (Ba)	ug/L	2.4	1.8	1.1	18.0	1.0	B042783
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042783
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	B042783
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	<0.010	0.015	0.010	B042783
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B042783
Dissolved Copper (Cu)	ug/L	0.37	<0.20	0.23	0.35	0.20	B042783
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	7.5	7.3	5.0	B042783
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B042783
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	B042783
Dissolved Manganese (Mn)	ug/L	<1.0	<1.0	<1.0	19.0	1.0	B042783
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B042783
Dissolved Phosphorus (P)	ug/L	<10	29	<10	23	10	B042783
Dissolved Selenium (Se)	ug/L	0.14	<0.10	0.17	<0.10	0.10	B042783
Dissolved Silicon (Si)	ug/L	6480	3880	7370	12800	100	B042783
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B042783
Dissolved Strontium (Sr)	ug/L	44.5	13.2	29.0	102	1.0	B042783
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B042783
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B042783
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042783
Dissolved Vanadium (V)	ug/L	<5.0	6.8	<5.0	<5.0	5.0	B042783
RDL = Reportable Detection Lir	nit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

Bureau Veritas ID		BUZ263	BUZ264	BUZ265	BUZ266				
Sampling Date		2023/07/18	2023/07/18	2023/07/18	2023/07/19				
Sampling Date		13:45	14:00	15:30	08:30				
COC Number		694569-02-01	694569-02-01	694569-02-01	694569-02-01				
	UNITS	WG-11222680-180723	WG-11222680-180723	WG-11222680-180723	WG-11222680-180723	RDL	QC Batch		
	UNITS	-KH-07	-KH-08	-KH-09	-KH-10	NDL	QC Battii		
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	8.0	5.0	B042783		
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B042783		
Dissolved Calcium (Ca)	mg/L	26.9	10.5	14.2	39.3	0.050	B040637		
Dissolved Magnesium (Mg)	mg/L	4.54	1.55	3.37	13.9	0.050	B040637		
Dissolved Potassium (K)	mg/L	0.271	0.174	0.223	1.19	0.050	B040637		
Dissolved Sodium (Na)	mg/L	4.01	0.990	5.91	26.5	0.050	B040637		
Dissolved Sulphur (S)	mg/L	3.0	<3.0	<3.0	<3.0	3.0	B040637		
RDL = Reportable Detection Li	RDL = Reportable Detection Limit								

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

Bureau Veritas ID		BUZ267		
Sampling Date		2023/07/19		
		09:30		
COC Number		694569-02-01		
	UNITS	WG-11222680-180723	RDL	QC Batch
		-KH-11		
Calculated Parameters	1	I		
Dissolved Hardness (CaCO3)	mg/L	<0.50	0.50	B040635
Elements			,	
Dissolved Mercury (Hg)	ug/L	<0.0019	0.0019	B050172
Dissolved Metals by ICPMS			,	
Dissolved Aluminum (AI)	ug/L	<3.0	3.0	B042772
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	B042772
Dissolved Arsenic (As)	ug/L	<0.10	0.10	B042772
Dissolved Barium (Ba)	ug/L	<1.0	1.0	B042772
Dissolved Beryllium (Be)	ug/L	<0.10	0.10	B042772
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	B042772
Dissolved Boron (B)	ug/L	<50	50	B042772
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	B042772
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	B042772
Dissolved Cobalt (Co)	ug/L	<0.20	0.20	B042772
Dissolved Copper (Cu)	ug/L	<0.20	0.20	B042772
Dissolved Iron (Fe)	ug/L	<5.0	5.0	B042772
Dissolved Lead (Pb)	ug/L	<0.20	0.20	B042772
Dissolved Lithium (Li)	ug/L	<2.0	2.0	B042772
Dissolved Manganese (Mn)	ug/L	<1.0	1.0	B042772
Dissolved Molybdenum (Mo)	ug/L	<1.0	1.0	B042772
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	B042772
Dissolved Phosphorus (P)	ug/L	<10	10	B042772
Dissolved Selenium (Se)	ug/L	<0.10	0.10	B042772
Dissolved Silicon (Si)	ug/L	<100	100	B042772
Dissolved Silver (Ag)	ug/L	<0.020	0.020	B042772
Dissolved Strontium (Sr)	ug/L	<1.0	1.0	B042772
Dissolved Thallium (TI)	ug/L	<0.010	0.010	B042772
Dissolved Tin (Sn)	ug/L	<5.0	5.0	B042772
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	B042772
Dissolved Uranium (U)	ug/L	<0.10	0.10	B042772
Dissolved Vanadium (V)	ug/L	<5.0	5.0	B042772
RDL = Reportable Detection Li				

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

Bureau Veritas ID		BUZ267		
Sampling Date		2023/07/19 09:30		
COC Number		694569-02-01		
	UNITS	WG-11222680-180723 -KH-11	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	B042772
Dissolved Zirconium (Zr)	ug/L	<0.10	0.10	B042772
Dissolved Calcium (Ca)	mg/L	<0.050	0.050	B040637
Dissolved Magnesium (Mg)	mg/L	<0.050	0.050	B040637
Dissolved Potassium (K)	mg/L	<0.050	0.050	B040637
Dissolved Sodium (Na)	mg/L	<0.050	0.050	B040637
Dissolved Sulphur (S)	mg/L	<3.0	3.0	B040637
RDL = Reportable Detection L	imit			

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

GENERAL COMMENTS

Sample BUZ262 [WG-11222680-180723-KH-06]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for Nitrate (N) by CFA.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3

1001 1.0. 11. 755	0020
Sampler Initials	: KH

			Matrix	Matrix Spike		Spiked Blank		Method Blank		D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042787	D10-ANTHRACENE (sur.)	2023/07/21			90	50 - 140	89	%		
B042787	D8-ACENAPHTHYLENE (sur.)	2023/07/21			93	50 - 140	89	%		
B042787	D8-NAPHTHALENE (sur.)	2023/07/21			85	50 - 140	80	%		
B042787	TERPHENYL-D14 (sur.)	2023/07/21			86	50 - 140	82	%		
B042796	O-TERPHENYL (sur.)	2023/07/21			94	60 - 140	98	%		
B044779	D10-ANTHRACENE (sur.)	2023/07/24			92	50 - 140	92	%		
B044779	D8-ACENAPHTHYLENE (sur.)	2023/07/24			95	50 - 140	89	%		
B044779	D8-NAPHTHALENE (sur.)	2023/07/24			80	50 - 140	72	%		
B044779	TERPHENYL-D14 (sur.)	2023/07/24			82	50 - 140	84	%		
B044780	O-TERPHENYL (sur.)	2023/07/24			95	60 - 140	93	%		
B045204	D10-ANTHRACENE (sur.)	2023/07/24			101	50 - 140	98	%		
B045204	D8-ACENAPHTHYLENE (sur.)	2023/07/24			101	50 - 140	97	%		
B045204	D8-NAPHTHALENE (sur.)	2023/07/24			84	50 - 140	80	%		
B045204	TERPHENYL-D14 (sur.)	2023/07/24			107	50 - 140	109	%		
B045218	O-TERPHENYL (sur.)	2023/07/24			97	60 - 140	94	%		
B041593	Orthophosphate (P)	2023/07/20	102 (1)	80 - 120	109	80 - 120	<0.0030	mg/L	1.4 (2)	20
B041707	Nitrate plus Nitrite (N)	2023/07/20	102	80 - 120	107	80 - 120	<0.020	mg/L	0.47 (3)	25
B041712	Nitrite (N)	2023/07/20	100	80 - 120	103	80 - 120	<0.0050	mg/L	NC (3)	20
B041758	рН	2023/07/20			100	97 - 103				
B041769	Conductivity	2023/07/20			100	90 - 110	<2.0	uS/cm	NC (4)	10
B041770	Alkalinity (PP as CaCO3)	2023/07/20					<1.0	mg/L	NC (4)	20
B041770	Alkalinity (Total as CaCO3)	2023/07/20			97	80 - 120	<1.0	mg/L	NC (4)	20
B041770	Bicarbonate (HCO3)	2023/07/20					<1.0	mg/L	NC (4)	20
B041770	Carbonate (CO3)	2023/07/20					<1.0	mg/L	NC (4)	20
B041770	Hydroxide (OH)	2023/07/20					<1.0	mg/L	NC (4)	20
B042566	рН	2023/07/21			100	97 - 103			1.1 (3)	N/A
B042634	Total Dissolved Solids	2023/07/24	101	80 - 120	97	80 - 120	<10	mg/L	2.5 (3)	20
B042772	Dissolved Aluminum (Al)	2023/07/22	117	80 - 120	97	80 - 120	<3.0	ug/L	4.4 (3)	20
B042772	Dissolved Antimony (Sb)	2023/07/22	123 (5)	80 - 120	100	80 - 120	<0.50	ug/L	NC (3)	20
B042772	Dissolved Arsenic (As)	2023/07/22	123 (5)	80 - 120	100	80 - 120	<0.10	ug/L	0.18 (3)	20
B042772	Dissolved Barium (Ba)	2023/07/22	119	80 - 120	100	80 - 120	<1.0	ug/L	0.71 (3)	20

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042772	Dissolved Beryllium (Be)	2023/07/22	116	80 - 120	95	80 - 120	<0.10	ug/L	NC (3)	20
B042772	Dissolved Bismuth (Bi)	2023/07/22	114	80 - 120	95	80 - 120	<1.0	ug/L	NC (3)	20
B042772	Dissolved Boron (B)	2023/07/22	118	80 - 120	99	80 - 120	<50	ug/L	NC (3)	20
B042772	Dissolved Cadmium (Cd)	2023/07/22	117	80 - 120	96	80 - 120	<0.010	ug/L	NC (3)	20
B042772	Dissolved Chromium (Cr)	2023/07/22	114	80 - 120	96	80 - 120	<1.0	ug/L	NC (3)	20
B042772	Dissolved Cobalt (Co)	2023/07/22	114	80 - 120	93	80 - 120	<0.20	ug/L	NC (3)	20
B042772	Dissolved Copper (Cu)	2023/07/22	107	80 - 120	91	80 - 120	<0.20	ug/L	0.93 (3)	20
B042772	Dissolved Iron (Fe)	2023/07/22	121 (5)	80 - 120	100	80 - 120	<5.0	ug/L	NC (3)	20
B042772	Dissolved Lead (Pb)	2023/07/22	115	80 - 120	94	80 - 120	<0.20	ug/L	NC (3)	20
B042772	Dissolved Lithium (Li)	2023/07/22	113	80 - 120	94	80 - 120	<2.0	ug/L	NC (3)	20
B042772	Dissolved Manganese (Mn)	2023/07/22	113	80 - 120	94	80 - 120	<1.0	ug/L	0.10 (3)	20
B042772	Dissolved Molybdenum (Mo)	2023/07/22	123 (5)	80 - 120	99	80 - 120	<1.0	ug/L	NC (3)	20
B042772	Dissolved Nickel (Ni)	2023/07/22	112	80 - 120	95	80 - 120	<1.0	ug/L	NC (3)	20
B042772	Dissolved Phosphorus (P)	2023/07/22	100	80 - 120	97	80 - 120	<10	ug/L	NC (3)	20
B042772	Dissolved Selenium (Se)	2023/07/22	120	80 - 120	100	80 - 120	<0.10	ug/L	0.35 (3)	20
B042772	Dissolved Silicon (Si)	2023/07/22	NC	80 - 120	107	80 - 120	<100	ug/L	0.32 (3)	20
B042772	Dissolved Silver (Ag)	2023/07/22	118	80 - 120	97	80 - 120	<0.020	ug/L	NC (3)	20
B042772	Dissolved Strontium (Sr)	2023/07/22	NC	80 - 120	96	80 - 120	<1.0	ug/L	0.98 (3)	20
B042772	Dissolved Thallium (Tl)	2023/07/22	117	80 - 120	94	80 - 120	<0.010	ug/L	NC (3)	20
B042772	Dissolved Tin (Sn)	2023/07/22	119	80 - 120	104	80 - 120	<5.0	ug/L	NC (3)	20
B042772	Dissolved Titanium (Ti)	2023/07/22	115	80 - 120	97	80 - 120	<5.0	ug/L	NC (3)	20
B042772	Dissolved Uranium (U)	2023/07/22	115	80 - 120	92	80 - 120	<0.10	ug/L	NC (3)	20
B042772	Dissolved Vanadium (V)	2023/07/22	119	80 - 120	96	80 - 120	<5.0	ug/L	NC (3)	20
B042772	Dissolved Zinc (Zn)	2023/07/22	114	80 - 120	96	80 - 120	<5.0	ug/L	NC (3)	20
B042772	Dissolved Zirconium (Zr)	2023/07/22	120	80 - 120	96	80 - 120	<0.10	ug/L	NC (3)	20
B042783	Dissolved Aluminum (AI)	2023/07/22	99	80 - 120	103	80 - 120	<3.0	ug/L	NC (3)	20
B042783	Dissolved Antimony (Sb)	2023/07/22	100	80 - 120	103	80 - 120	<0.50	ug/L	NC (3)	20
B042783	Dissolved Arsenic (As)	2023/07/22	101	80 - 120	103	80 - 120	<0.10	ug/L	NC (3)	20
B042783	Dissolved Barium (Ba)	2023/07/22	95	80 - 120	99	80 - 120	<1.0	ug/L	2.4 (3)	20
B042783	Dissolved Beryllium (Be)	2023/07/22	102	80 - 120	104	80 - 120	<0.10	ug/L	NC (3)	20
B042783	Dissolved Bismuth (Bi)	2023/07/22	98	80 - 120	98	80 - 120	<1.0	ug/L	NC (3)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042783	Dissolved Boron (B)	2023/07/22	102	80 - 120	107	80 - 120	<50	ug/L	NC (3)	20
B042783	Dissolved Cadmium (Cd)	2023/07/22	97	80 - 120	101	80 - 120	<0.010	ug/L	NC (3)	20
B042783	Dissolved Chromium (Cr)	2023/07/22	96	80 - 120	99	80 - 120	<1.0	ug/L	NC (3)	20
B042783	Dissolved Cobalt (Co)	2023/07/22	93	80 - 120	98	80 - 120	<0.20	ug/L	NC (3)	20
B042783	Dissolved Copper (Cu)	2023/07/22	93	80 - 120	98	80 - 120	<0.20	ug/L	NC (3)	20
B042783	Dissolved Iron (Fe)	2023/07/22	103	80 - 120	105	80 - 120	<5.0	ug/L	NC (3)	20
B042783	Dissolved Lead (Pb)	2023/07/22	104	80 - 120	101	80 - 120	<0.20	ug/L	NC (3)	20
B042783	Dissolved Lithium (Li)	2023/07/22	100	80 - 120	102	80 - 120	<2.0	ug/L	NC (3)	20
B042783	Dissolved Manganese (Mn)	2023/07/22	96	80 - 120	100	80 - 120	<1.0	ug/L	0.52 (3)	20
B042783	Dissolved Molybdenum (Mo)	2023/07/22	101	80 - 120	104	80 - 120	<1.0	ug/L	NC (3)	20
B042783	Dissolved Nickel (Ni)	2023/07/22	94	80 - 120	99	80 - 120	<1.0	ug/L	NC (3)	20
B042783	Dissolved Phosphorus (P)	2023/07/22	100	80 - 120	103	80 - 120	<10	ug/L	NC (3)	20
B042783	Dissolved Selenium (Se)	2023/07/22	100	80 - 120	102	80 - 120	<0.10	ug/L	0.55 (3)	20
B042783	Dissolved Silicon (Si)	2023/07/22	NC	80 - 120	111	80 - 120	<100	ug/L	1.2 (3)	20
B042783	Dissolved Silver (Ag)	2023/07/22	97	80 - 120	100	80 - 120	<0.020	ug/L	NC (3)	20
B042783	Dissolved Strontium (Sr)	2023/07/22	99	80 - 120	101	80 - 120	<1.0	ug/L	0.26 (3)	20
B042783	Dissolved Thallium (TI)	2023/07/22	99	80 - 120	99	80 - 120	<0.010	ug/L	NC (3)	20
B042783	Dissolved Tin (Sn)	2023/07/22	97	80 - 120	105	80 - 120	<5.0	ug/L	NC (3)	20
B042783	Dissolved Titanium (Ti)	2023/07/22	97	80 - 120	101	80 - 120	<5.0	ug/L	NC (3)	20
B042783	Dissolved Uranium (U)	2023/07/22	103	80 - 120	100	80 - 120	<0.10	ug/L	NC (3)	20
B042783	Dissolved Vanadium (V)	2023/07/22	97	80 - 120	101	80 - 120	<5.0	ug/L	NC (3)	20
B042783	Dissolved Zinc (Zn)	2023/07/22	98	80 - 120	102	80 - 120	<5.0	ug/L	NC (3)	20
B042783	Dissolved Zirconium (Zr)	2023/07/22	100	80 - 120	101	80 - 120	<0.10	ug/L	NC (3)	20
B042787	Acenaphthene	2023/07/21			82	50 - 140	<0.050	ug/L		
B042787	Acridine	2023/07/21			89	50 - 140	<0.050	ug/L		
B042787	Anthracene	2023/07/21			84	50 - 140	<0.010	ug/L		
B042787	Benzo(a)anthracene	2023/07/21			81	50 - 140	<0.010	ug/L		
B042787	Benzo(a)pyrene	2023/07/21			83	50 - 140	<0.0050	ug/L		
B042787	Fluoranthene	2023/07/21			77	50 - 140	<0.020	ug/L		
B042787	Fluorene	2023/07/21			81	50 - 140	<0.050	ug/L		
B042787	Naphthalene	2023/07/21			81	50 - 140	<0.10	ug/L		

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B042787	Phenanthrene	2023/07/21			80	50 - 140	<0.050	ug/L		
B042787	Pyrene	2023/07/21			77	50 - 140	<0.020	ug/L		
B042796	EPH (C10-C19)	2023/07/21			103	70 - 130	<0.20	mg/L		
B042796	EPH (C19-C32)	2023/07/21			108	70 - 130	<0.20	mg/L		
B044779	Acenaphthene	2023/07/24			80	50 - 140	<0.050	ug/L		
B044779	Acridine	2023/07/24			83	50 - 140	<0.050	ug/L		
B044779	Anthracene	2023/07/24			80	50 - 140	<0.010	ug/L		
B044779	Benzo(a)anthracene	2023/07/24			79	50 - 140	<0.010	ug/L		
B044779	Benzo(a)pyrene	2023/07/24			84	50 - 140	<0.0050	ug/L		
B044779	Fluoranthene	2023/07/24			68	50 - 140	<0.020	ug/L		
B044779	Fluorene	2023/07/24			78	50 - 140	<0.050	ug/L		
B044779	Naphthalene	2023/07/24			75	50 - 140	<0.10	ug/L		
B044779	Phenanthrene	2023/07/24			78	50 - 140	<0.050	ug/L		
B044779	Pyrene	2023/07/24			67	50 - 140	<0.020	ug/L		
B044780	EPH (C10-C19)	2023/07/24			102	70 - 130	<0.20	mg/L		
B044780	EPH (C19-C32)	2023/07/24			102	70 - 130	<0.20	mg/L		
B045204	Acenaphthene	2023/07/24			95	50 - 140	<0.050	ug/L	NC (3)	40
B045204	Acridine	2023/07/24			99	50 - 140	< 0.050	ug/L	NC (3)	40
B045204	Anthracene	2023/07/24			106	50 - 140	<0.010	ug/L	NC (3)	40
B045204	Benzo(a)anthracene	2023/07/24			95	50 - 140	<0.010	ug/L	NC (3)	40
B045204	Benzo(a)pyrene	2023/07/24			102	50 - 140	<0.0050	ug/L	NC (3)	40
B045204	Fluoranthene	2023/07/24			102	50 - 140	<0.020	ug/L	NC (3)	40
B045204	Fluorene	2023/07/24			100	50 - 140	<0.050	ug/L	NC (3)	40
B045204	Naphthalene	2023/07/24			88	50 - 140	<0.10	ug/L	NC (3)	40
B045204	Phenanthrene	2023/07/24			92	50 - 140	< 0.050	ug/L	NC (3)	40
B045204	Pyrene	2023/07/24			104	50 - 140	<0.020	ug/L	NC (3)	40
B045215	Total Dissolved Solids	2023/07/25	101	80 - 120	108	80 - 120	<10	mg/L	3.3 (3)	20
B045218	EPH (C10-C19)	2023/07/24			101	70 - 130	<0.20	mg/L	0.85 (3)	30
B045218	EPH (C19-C32)	2023/07/24			104	70 - 130	<0.20	mg/L	29 (3)	30
B045835	Chloride (CI)	2023/07/25	106 (1)	80 - 120	101	80 - 120	<1.0	mg/L	NC (2)	20
B045835	Sulphate (SO4)	2023/07/25	120 (1)	80 - 120	98	80 - 120	<1.0	mg/L	3.7 (2)	20

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B046614	Total Ammonia (N)	2023/07/25	124 (5)	80 - 120	109	80 - 120	<0.015	mg/L	NC (3)	20
B046617	Total Ammonia (N)	2023/07/25	NC	80 - 120	109	80 - 120	<0.015	mg/L	0.22 (3)	20
B046711	Total Sulphide	2023/07/25	61 (5,6)	80 - 120	105	80 - 120	<0.0018	mg/L	NC (7)	20
B049143	Dissolved Aluminum (AI)	2023/07/26			105	80 - 120	<3.0	ug/L		
B049143	Dissolved Antimony (Sb)	2023/07/26			108	80 - 120	<0.50	ug/L		
B049143	Dissolved Arsenic (As)	2023/07/26			106	80 - 120	<0.10	ug/L		
B049143	Dissolved Barium (Ba)	2023/07/26			102	80 - 120	<1.0	ug/L		
B049143	Dissolved Beryllium (Be)	2023/07/26			103	80 - 120	<0.10	ug/L		
B049143	Dissolved Bismuth (Bi)	2023/07/26			103	80 - 120	<1.0	ug/L		
B049143	Dissolved Boron (B)	2023/07/26			94	80 - 120	<50	ug/L		
B049143	Dissolved Cadmium (Cd)	2023/07/26			105	80 - 120	<0.010	ug/L		
B049143	Dissolved Chromium (Cr)	2023/07/26			105	80 - 120	<1.0	ug/L		
B049143	Dissolved Cobalt (Co)	2023/07/26			102	80 - 120	<0.20	ug/L		
B049143	Dissolved Copper (Cu)	2023/07/26			102	80 - 120	<0.20	ug/L		
B049143	Dissolved Iron (Fe)	2023/07/26			105	80 - 120	<5.0	ug/L		
B049143	Dissolved Lead (Pb)	2023/07/26			101	80 - 120	<0.20	ug/L		
B049143	Dissolved Lithium (Li)	2023/07/26			92	80 - 120	<2.0	ug/L		
B049143	Dissolved Manganese (Mn)	2023/07/26			104	80 - 120	<1.0	ug/L		
B049143	Dissolved Molybdenum (Mo)	2023/07/26			107	80 - 120	<1.0	ug/L		
B049143	Dissolved Nickel (Ni)	2023/07/26			103	80 - 120	<1.0	ug/L		
B049143	Dissolved Phosphorus (P)	2023/07/26			100	80 - 120	<10	ug/L		
B049143	Dissolved Selenium (Se)	2023/07/26			107	80 - 120	<0.10	ug/L		
B049143	Dissolved Silicon (Si)	2023/07/26			108	80 - 120	<100	ug/L		
B049143	Dissolved Silver (Ag)	2023/07/26			104	80 - 120	<0.020	ug/L		
B049143	Dissolved Strontium (Sr)	2023/07/26			102	80 - 120	<1.0	ug/L		
B049143	Dissolved Thallium (TI)	2023/07/26			105	80 - 120	<0.010	ug/L		
B049143	Dissolved Tin (Sn)	2023/07/26			109	80 - 120	<5.0	ug/L		
B049143	Dissolved Titanium (Ti)	2023/07/26			104	80 - 120	<5.0	ug/L		
B049143	Dissolved Uranium (U)	2023/07/26			103	80 - 120	<0.10	ug/L		
B049143	Dissolved Vanadium (V)	2023/07/26			105	80 - 120	<5.0	ug/L		
B049143	Dissolved Zinc (Zn)	2023/07/26			107	80 - 120	<5.0	ug/L		

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix	Spike	Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B049143	Dissolved Zirconium (Zr)	2023/07/26			105	80 - 120	<0.10	ug/L		
B050172	Dissolved Mercury (Hg)	2023/07/28	92 (8)	80 - 120	98	80 - 120	<0.0019	ug/L	NC (9)	20
B050548	Orthophosphate (P)	2023/07/27			100	80 - 120	<0.0030	mg/L		
B050697	Chloride (CI)	2023/07/27	102 (10)	80 - 120	102	80 - 120	<1.0	mg/L	1.3 (11)	20
B050697	Sulphate (SO4)	2023/07/27	99 (10)	80 - 120	107	80 - 120	<1.0	mg/L	3.2 (11)	20
B050725	рН	2023/07/28			100	97 - 103			0.15 (3)	N/A
B050736	Conductivity	2023/07/28			99	90 - 110	<2.0	uS/cm		
B050737	Alkalinity (PP as CaCO3)	2023/07/28					<1.0	mg/L	NC (3)	20
B050737	Alkalinity (Total as CaCO3)	2023/07/28			100	80 - 120	<1.0	mg/L	2.5 (3)	20
B050737	Bicarbonate (HCO3)	2023/07/28					<1.0	mg/L	2.5 (3)	20
B050737	Carbonate (CO3)	2023/07/28					<1.0	mg/L	NC (3)	20
B050737	Hydroxide (OH)	2023/07/28					<1.0	mg/L	NC (3)	20
B050809	Nitrate plus Nitrite (N)	2023/07/27	103	80 - 120	110	80 - 120	<0.020	mg/L	NC (3)	25

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3

Sampler Initials: KH

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B050812	Nitrite (N)	2023/07/27	98	80 - 120	107	80 - 120	<0.0050	mg/L	NC (3)	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Matrix Spike Parent ID [BUZ264-01]
- (2) Duplicate Parent ID [BUZ264-01]
- (3) Duplicate Parent ID
- (4) Duplicate Parent ID [BUZ267-01]
- (5) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (6) Matrix Spike Parent ID [BUZ262-05]
- (7) Duplicate Parent ID [BUZ261-05]
- (8) Matrix Spike Parent ID [BUZ262-04]
- (9) Duplicate Parent ID [BUZ261-04]
- (10) Matrix Spike Parent ID [BUZ262-01]
- (11) Duplicate Parent ID [BUZ262-01]

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-3 Sampler Initials: KH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brody Andersen, B.Sc., B.Sc., Program Specialist–Emergency Spill Response

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

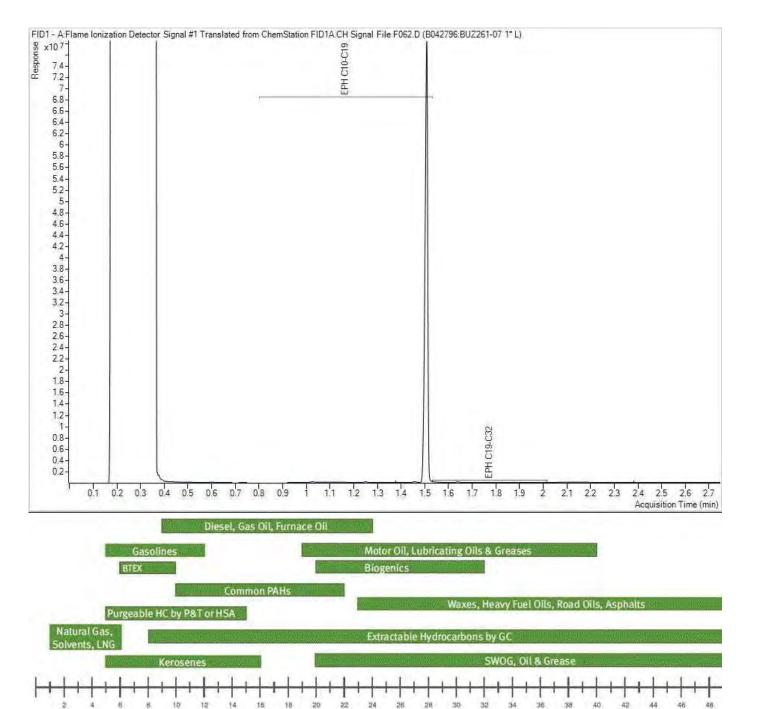
Maxxam

C354973_ACTR

ADDITIONAL COOLER TEMPERATURE RECORD

CHAIN-OF-CUSTODY RECORD

	COOLER OBSERVAT	10145:	_					MA	XXXM JOB#:							1
CHAIN OF CUSTODY								1		vis I	no (c	OOCD	10	_		-
	DUDITED Y 18 As	-185	100	SECULAR 4D					CUSTOMS NA		-	-	-		1	1
e e	SAEPEN,		-		6.1	- 24	10	1	PREMIE		-	TOM			1	- 1
ol	Datin			1004	195	9	14		WELL	-	-		1 1	100	1 1	-1
能 介	Selection .	-			7	1	3	4	ICC PRESENT	70	nO.	coor	18.01	-	-	
ul	CONTOUT SEAL	191	80	COURTE OF					CUSTORY SEAT	-	-	-	1	7	7	-
Vie	PROJECT		-		n	11	11		PARTICIAL		-	124	MP	1	1	-1
of	sutsG	-		TEMP	.4	14	16				_	1	1 1	1 2	1 .	1
64	ici putstni.				1.0	1	1	_	THERENY BY	123	.00	Kino	UK O	-	-	-
ol	CURTIGUY MAL.	385	NO.	COCKER	3			_	CARLEMA BOYC	1	-	1		1	T	
gs	+9/38mf	1		100					BOD STATE	1	1	T ri	MF.			. 1
ol	INTEL		0.7	THE				. 1	CEPHENIMI	-	1	1	-1.4	1.4	1	1
164	darentan)			1	1.55	1 1		-	DUSTOUX SEAS	TES	360	ÇLK	NEA ID		-	
of	conton Mac	113	90	COLUMN	0		-	-	PREMIN	1	1	1			T	
ALP.	PRESENT	1		1		1	1		HENCE	1	1	7	TMP	1	1	7
of	HETPE?			TEMP	1	1		. 1	See Pales (NV	i	-		1	1		3.
age.	FILE MEMORY		1	1	1	1 1		-	ENGIODE MAL	YO	166	1 (0)	O IU O	-		
10/	COSTODY SEAL	TES	(80)	COOKS	10		_	-	PATRICK.			\neg		1	1	
SQE	PREMAN			1	1			- 1	HETACO			7	TIME	- 1		
cl	SHIPE			TDVF		1		. 1	IN HASAM					1	7	1
igs	CEPSEION'			1	, x		1	-	COLUDIN SIAL	115	1 14	0 0	DOMESTIC.		15	
of	CONTROLL AND IN	1925	760	Coom	1117	-	-	_	64300							
age	PRESENT.				1				300163		- 1	_	THAT	- 1	- 1	
of	MITACI			TEM	1		. 1	6.1	SCETATION.					1	3.1	
lage.	ICE PRESENT	1			1 .	_	*	-	SUSTORY MAG	T	15 1	WILL .	(dough to			
of	CHISTING ROAL	193	- 19	COOL	6 111	_	-	_	PRESDIT						- 1	
rage	198300						-		witer		1	-1	Alteria.	- 1	- 1	
nt	MTACL			TEM	-		7	4	KE PRESENT					3	7	- 3
Page	CCL PRESENT		3		1		4	-	CUNTODY SIM.		(13)	HO.	TOURN IN			
ol	Cristian ages	12	3 8	th thou	EALTH-	-	_	_	MEMNI							
Page .	religion								Distribution		- 1		TEMP			
of	CATRO		_	100	44	. 1	4	1.7	ICE PRESENT					1	-	-
Fulle	(CEMEDIN)					1.	-	_	CUSTOMIT SEAL		315	MO	COOKER III		****	
0/	CUSTORY SEAL	1	5]	100	ER IO	_	_	_	CHEMINA	i	-		1			
Page	THENEW		71			-			INTACT		- 1		TIMP	1		1
of	Clates			2.0	MP.		1		(LEPSESIO)	1				- 6	- 3	1
Page	CONTRACTOR					1	_	-	CUSTOUT MAN		111	340	COOLER ID			_
_ 0	CIVALOWY SEAS	. 1	11	NO CH	REN HD		_	-	Fel/Ed	T.						1
rage	PRESIDE		4			1		1	ristac	_			TDVP			1
al	Tarre			- 1	DMP	. 1	1.0	١.	GES PRESENT.					L	1.	1
Page	FREZION DI				_	+	- 2	1								
1 0								_	To lo	ATE (Y	4441	MM	(00)	TIME	HHEN	(1/1)
	RECEIVED	YTSIGN	(EP	RIMT						_				1	-	-
	177	1. /	7						NE CAULI	0.0	21	-	100	1º A	820	1
	Colle	11 8 1			- 1	1.00		- 46	A CONTRACT	F1451	-511	271	100	1 0	1300	

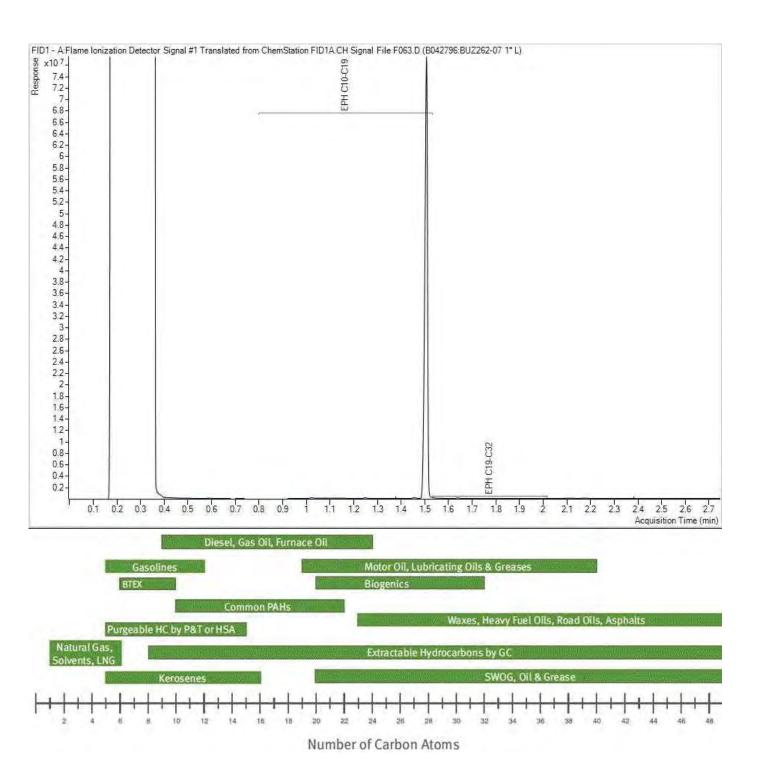

irmeil												-							-	Laboratory Use C	Tesh.
_		WYOCE TO		-	_	Lun		belower Face of		_	_	-	_		C30090	ndisemstite	_	_	_	Susian Ventus Joh#	Burtis Order
ary Nume	AP Invoices - 7			-	Company to	104	Lyni	150	-	_			ultistion #		735-002	540.3			_	Displace Visitors State 9	h 2000-200-200-2
T Name	455 PHILLIP S				Corned New Address:	and private se	Destroit						O. of		1122268	-					104200
	WATERLOO C	The second second											and home							Claim Of Gustady Record	Project Manes
	(519) 884-0510		(519) 725-1394	-	mes.	Alexander	nete.	4.00	_ fix.	1000	The State of		2.5		Ground	water Neer	UA3	327	- 11	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN	Strong Annexis
_	APinvoices-735	AERIENE COM		_	Erest	NationalE	Drianthbo	ortiga (m.	EXCEPTION OF	a, stapna				IN FARS IN	E RPECIFIC	-	i div	210		Turneround Time (TAT) Rec	D. Company
may C	-		-			*********	eV.	-	_		T AND	-	CHEST CO.	PLEASE S	1 - 1	1				Punis proride advanti roma form	
CSIII			- 1	sottles	Seld !	likred u	na		4			(Calc)			de	4		11.57	Heguler (Ska	odart) TAT:	-0.25
CCAN			P	IT. SCI'I	vid as	mdical	ed or	7	NOS			65		Ö	Ras	st PAHs			6.1.1	of Hour TAT is mis somewine.	
BC Wile	r Quilly		,	100	He			2	NO			onized (a) H2S)	n II	CV Hg	臣	85			-	f + 5.2 Washing steps for most trick.	
	- Annual -							6	Dri	L V	100	0 P	100	with C	*	sobtr			Right; critical	Standard TAT for better soils such as BCI I your Project Manager for stalkly.	Gard Domerture
Ottom		_						100	100	Shirty	100	azir.	(Total)	w set	80	with a		3	Job Specific	e Such TAT (P applies to antire automite	sion)
								1	0	180	155 155	O-40	W (To	Meta	olved Solids (Filt Residue)	3		Temperati	LOWE	1 Day Dev Dev Hospi	and
Marrie .	NAME OF TAXABLE PARTY.	the same and the	and the same of th	No. of Street				3	PON	2	*	do. 1	· e	D 88	Disse	ГЕРНИЕРН	Ŧ	E .	Simb Contro	mation Number	
SAMPL	S MUST BE KEPT C	COL (- 10°C) FROM TIM	IE OF SAMPLING L	MATEL DEL	INERY TO E	UREAU VEHITAS		8	Condu	609	Sulphi	Sulphi	oun	Serti	Total C	H	Field	Die	s or female	Commen	Martin E
Sample	Decre Libé	Sample (Location)	Islanticomy	Date	Sarques	Tire Seriond	Abico	2	82	8	6	6	3	음호	2	7	Œ.	44-			
	wite	11222680-1807	73 -KHOS	15	310113	1040	W	X	X	X	X	V	X	X	X	/	7 70	16-92			
						12.6	1	V	1	X	V	V	X	X	1	×	115	u an			
	WG-	11222680-180	H13-11	10	18/07/23	1210	- W	1	0	1	1	17	1	6	1	17	7.65	16.90			_
	W6+	1222680-180	723-KH	THE STATE OF	18/09/2	3 1345	TU	IX	X	X	X	X	X	X	X	X	6.99	14.96			
	1100			1	10.00	72 THY	i id	X	V	X	X	X	X	X	X	X	859	15.95			
	Wit -	11222680-18	D473-CH	10	18071	73 140	W	-10	0	10	()	1	5	0	V	1	- 3	1.0		-	
	Wh:	11772680-1	80723-K	HA	18167	73 153	0 W	X	X	1	X	X	X	1	1	1	151	15.20	1	- INC. SOZ (6. LANS ALD) SOM	
	his.	11222680-1	0/072-1	110	- 19/19	173 43	1 10	1 X	X	X	X	X	X	X	X	X	6.99	14.59	1	12 No. 10 Teles	
_		-	100	1	1100	62 03	40		12.0	1	1	1	-	1	12	1	1			一种的特殊的	865.19
	WG-	11227680 -1	90725-K	11-11	1910	173 93) W	- X	X	×	X	X	X	X	X	X	0	0		C354973_COC	- OC 40 / 1 C (MI)
						-		-	1					1	-						
				-			-	-		-	1		-	-	-						
	опенен вт (вирии			YMMDG			- N	CENED	BY (Signal	hare/Frinti	•	1	Date: (VV)		Tites	- 100	te unest and		_	Lan invitray	
ark !	een Hasse	KUL	1970	1/73	81	5	91	VM	-	100		-	230.	719	11:0	_		F	7000	economical field for property	Van 1 No
_						Cally	416 C	DEL	ANG	CH	2161		4230	21/10	080		na maine	1 -	, c	CUM TERING WHICHARD WHILE	AND THE PERSON NAMED IN

Page 30 of 37

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-05

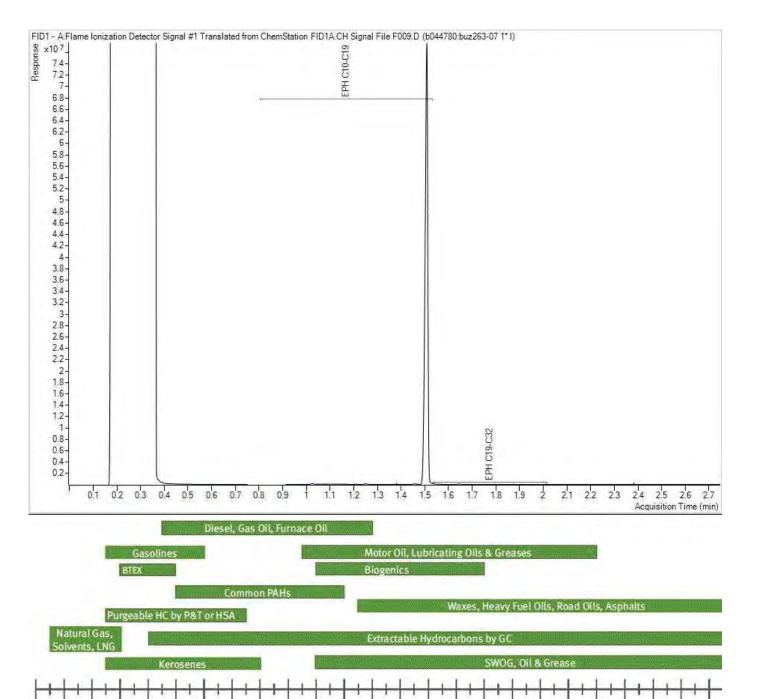
EPH in Water when PAH required Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-06



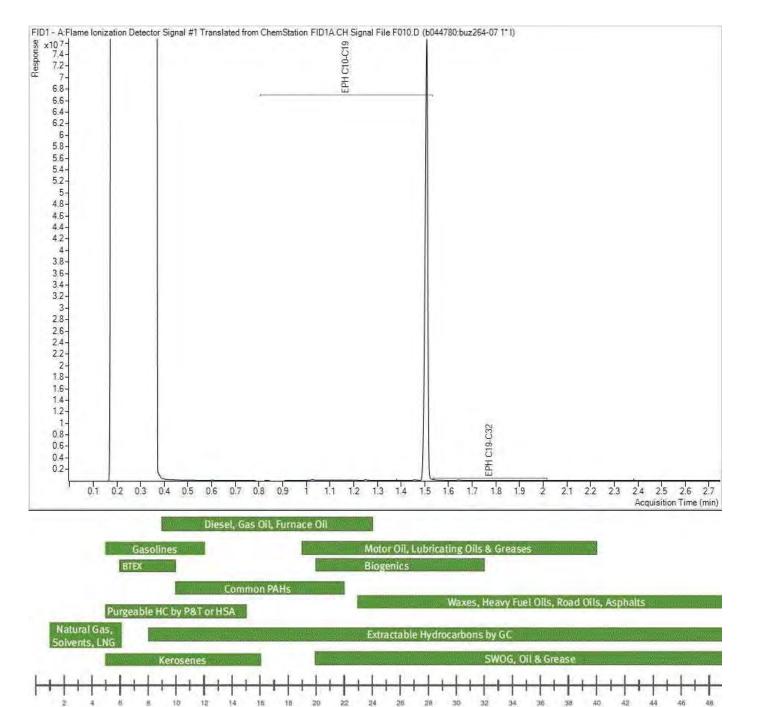
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-07

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

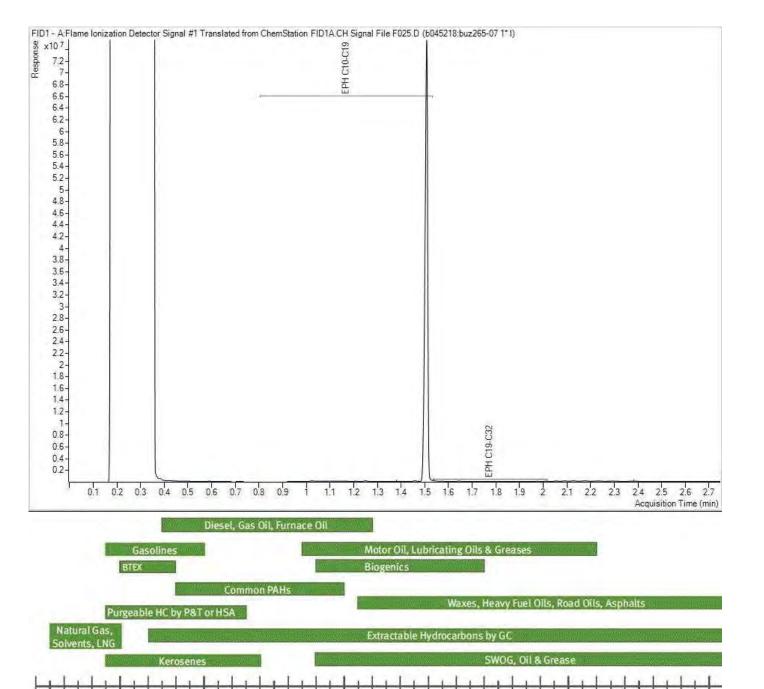

18

16

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-08

EPH in Water when PAH required Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-09

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

18

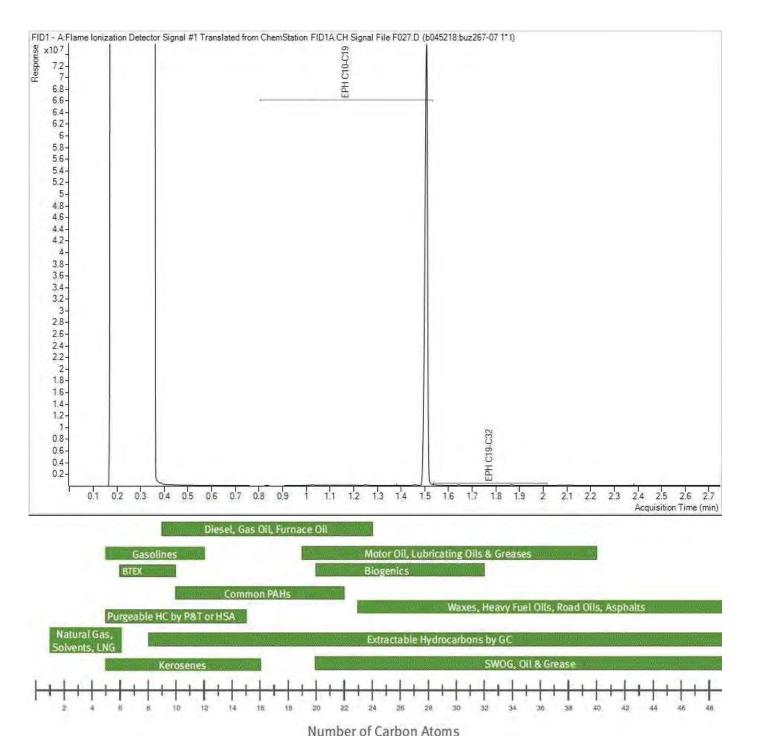
16

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-10

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


18

16

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL Client ID: WG-11222680-180723-KH-11

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: 735-002640-4 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your C.O.C. #: 700911-01-01, 700911-03-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

> Report Date: 2023/09/18 Report #: R3396694

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C371107 Received: 2023/09/08, 16:36

Sample Matrix: Water # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	9	N/A	2023/09/11	BBY6SOP-00026	SM 24 2320 B m
Alkalinity @25C (pp, total), CO3,HCO3,OH	2	N/A	2023/09/12	BBY6SOP-00026	SM 24 2320 B m
Chloride/Sulphate by Auto Colourimetry	5	N/A	2023/09/11	BBY6SOP-00011 / BBY6SOP-00017	SM24-4500-CI/SO4-E m
Chloride/Sulphate by Auto Colourimetry	6	N/A	2023/09/12	BBY6SOP-00011 / BBY6SOP-00017	SM24-4500-Cl/SO4-E m
Conductivity @25C	9	N/A	2023/09/11	BBY6SOP-00026	SM 24 2510 B m
Conductivity @25C	2	N/A	2023/09/12	BBY6SOP-00026	SM 24 2510 B m
Sulphide (as H2S) (1)	10	N/A	2023/09/12		Auto Calc
Sulphide (as H2S) (1)	1	N/A	2023/09/13		Auto Calc
Un-ionized Hydrogen Sulphide as S Calc (1)	10	N/A	2023/09/12		
Hardness (calculated as CaCO3)	11	N/A	2023/09/14	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CV (2)	11	2023/09/13	2023/09/13	AB SOP-00084	BCMOE BCLM Oct2013 m
EPH in Water when PAH required	11	2023/09/14	2023/09/14	BBY8SOP-00029	BCMOE BCLM Sep2017 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	11	N/A	2023/09/14	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (2)	11	N/A	2023/09/14	BBY7SOP-00002	EPA 6020b R2 m
Ammonia-N (Total)	6	N/A	2023/09/11	AB SOP-00007	SM 24 4500 NH3 A G m
Ammonia-N (Total)	5	N/A	2023/09/13	AB SOP-00007	SM 24 4500 NH3 A G m
Nitrate + Nitrite (N)	11	N/A	2023/09/09	BBY6SOP-00010	SM 24 4500-NO3- H m
Nitrite (N) Regular Level Water	11	N/A	2023/09/09	BBY6SOP-00010	SM 24 4500-NO2- m
Nitrogen - Nitrate (as N)	11	N/A	2023/09/12	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	11	2023/09/14	2023/09/14	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (3)	11	N/A	2023/09/15	BBY WI-00033	Auto Calc
Orthophosphate by Automated Analyzer (4)	11	N/A	2023/09/09	BBY6SOP-00013	SM 24 4500-P E m
Total Sulphide (1)	10	N/A	2023/09/12	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Sulphide (1)	1	N/A	2023/09/13	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue)	11	2023/09/11	2023/09/12	BBY6SOP-00033	SM 24 2540 C m
EPH less PAH in Water by GC/FID (5)	11	N/A	2023/09/15	BBY WI-00033	Auto Calc
Field pH	10	N/A	2023/09/08		
Field Temperature	10	N/A	2023/09/08		

Remarks:

Your P.O. #: 735-002640-4 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your C.O.C. #: 700911-01-01, 700911-03-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/09/18

Report #: R3396694 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C371107

Received: 2023/09/08, 16:36

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (4) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (5) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Your P.O. #: 735-002640-4 Your Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your C.O.C. #: 700911-01-01, 700911-03-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

> Report Date: 2023/09/18 Report #: R3396694

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C371107 Received: 2023/09/08, 16:36

Encryption Key

Bureau Veritas 18 Sep 2023 11:50:13

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist-Emergency Spill Response

Email: Brody.Andersen@bureauveritas.com

Phone# (780)577-7120

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BYQ312	BYQ313			BYQ314		
Sampling Date		2023/09/06	2023/09/06			2023/09/07		
Jamping Date		16:00	16:55			08:45		
COC Number		700911-01-01	700911-01-01			700911-01-01		
	UNITS	WG-11222680-060923 -CXW-01	WG-11222680-060923 -CXW-02	RDL	QC Batch	WG-11222680-070923 -CXW-03	RDL	QC Batch
ANIONS	'			l .		1	l .	
Nitrite (N)	mg/L	<0.0050	<0.0050	0.0050	B101391	<0.0050	0.0050	B101391
Calculated Parameters			1	l.			l.	
Nitrate (N)	mg/L	0.637	1.06	0.020	B099920	2.33	0.040	B099920
Sulphide (as H2S)	mg/L	<0.0020	<0.0020	0.0020	B100168	<0.0020	0.0020	B100168
Field Parameters								
Field pH	рН	7.89	7.37	N/A	ONSITE	6.61	N/A	ONSITE
Field Temperature	°C	12.57	10.61	N/A	ONSITE	11.02	N/A	ONSITE
Misc. Inorganics				•			•	
Conductivity	uS/cm	180	200	2.0	B102512	140	2.0	B102524
Total Dissolved Solids	mg/L	110	120	10	B102287	84	10	B102287
Anions	•			•			•	
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	1.0	B102506	<1.0	1.0	B102520
Alkalinity (Total as CaCO3)	mg/L	72	85	1.0	B102506	45	1.0	B102520
Bicarbonate (HCO3)	mg/L	87	100	1.0	B102506	55	1.0	B102520
Carbonate (CO3)	mg/L	<1.0	<1.0	1.0	B102506	<1.0	1.0	B102520
Hydroxide (OH)	mg/L	<1.0	<1.0	1.0	B102506	<1.0	1.0	B102520
Total Sulphide	mg/L	<0.0018	<0.0018	0.0018	B104312	<0.0018	0.0018	B104312
Chloride (Cl)	mg/L	4.2	1.9	1.0	B102798	2.2	1.0	B102798
Sulphate (SO4)	mg/L	9.4	9.2	1.0	B102798	8.4	1.0	B102798
Nutrients	•			•			•	
Total Ammonia (N)	mg/L	<0.015	<0.015	0.015	B103325	<0.015	0.015	B103325
Orthophosphate (P)	mg/L	0.012	0.0048	0.0030	B101105	0.0048	0.0030	B101105
Nitrate plus Nitrite (N)	mg/L	0.637	1.06	0.020	B101390	2.33	0.040	B101390
RDL = Reportable Detection I	imit							

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BYQ314			BYQ315	BYQ315		
Sampling Date		2023/09/07 08:45			2023/09/07 09:55	2023/09/07 09:55		
COC Number		700911-01-01			700911-01-01	700911-01-01		
	UNITS	WG-11222680-070923 -CXW-03 Lab-Dup	RDL	QC Batch	WG-11222680-070923 -CXW-04	WG-11222680-070923 -CXW-04 Lab-Dup	RDL	QC Batch
ANIONS								
Nitrite (N)	mg/L	N/A	0.0050	B101391	<0.0050	N/A	0.0050	B101391
Calculated Parameters	•							
Nitrate (N)	mg/L	N/A	0.040	B099920	0.062	N/A	0.020	B099920
Sulphide (as H2S)	mg/L	N/A	0.0020	B100168	<0.0020	N/A	0.0020	B100168
Field Parameters								
Field pH	рН	N/A	N/A	ONSITE	8.20	N/A	N/A	ONSITE
Field Temperature	°C	N/A	N/A	ONSITE	10.56	N/A	N/A	ONSITE
Misc. Inorganics								
Conductivity	uS/cm	140	2.0	B102524	87	N/A	2.0	B102512
Total Dissolved Solids	mg/L	N/A	10	B102287	60	N/A	10	B102287
Anions								
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	B102520	<1.0	N/A	1.0	B102506
Alkalinity (Total as CaCO3)	mg/L	43	1.0	B102520	39	N/A	1.0	B102506
Bicarbonate (HCO3)	mg/L	53	1.0	B102520	48	N/A	1.0	B102506
Carbonate (CO3)	mg/L	<1.0	1.0	B102520	<1.0	N/A	1.0	B102506
Hydroxide (OH)	mg/L	<1.0	1.0	B102520	<1.0	N/A	1.0	B102506
Total Sulphide	mg/L	N/A	0.0018	B104312	<0.0018	N/A	0.0018	B104312
Chloride (CI)	mg/L	N/A	1.0	B102798	<1.0	<1.0	1.0	B103224
Sulphate (SO4)	mg/L	N/A	1.0	B102798	2.8	2.7	1.0	B103224
Nutrients								
Total Ammonia (N)	mg/L	N/A	0.015	B103325	<0.015	N/A	0.015	B103325
Orthophosphate (P)	mg/L	N/A	0.0030	B101105	0.021	N/A	0.0030	B101105
Nitrate plus Nitrite (N)	mg/L	N/A	0.040	B101390	0.062	N/A	0.020	B101390
1								

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BYQ316	BYQ317		BYQ318		
Sampling Date		2023/09/07	2023/09/07		2023/09/07		
Janipinig Date		10:05	10:07		11:20		
COC Number		700911-01-01	700911-01-01		700911-01-01		
	UNITS		WG-11222680-070923	QC Batch	WG-11222680-070923	RDL	QC Batch
		-CXW-05	-CXW-06		-CXW-07		
ANIONS							
Nitrite (N)	mg/L	<0.0050	<0.0050	B101391	<0.0050	0.0050	B101391
Calculated Parameters							
Nitrate (N)	mg/L	0.325	0.326	B099920	0.127	0.020	B099920
Sulphide (as H2S)	mg/L	<0.0020	<0.0020	B100168	<0.0020	0.0020	B100168
Field Parameters	•					•	
Field pH	рН	6.74	6.74	ONSITE	7.32	N/A	ONSITE
Field Temperature	°C	11.84	11.84	ONSITE	12.36	N/A	ONSITE
Misc. Inorganics	•					•	
Conductivity	uS/cm	170	170	B102512	88	2.0	B102512
Total Dissolved Solids	mg/L	96	100	B102287	54	10	B102287
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	B102506	<1.0	1.0	B102506
Alkalinity (Total as CaCO3)	mg/L	67	67	B102506	35	1.0	B102506
Bicarbonate (HCO3)	mg/L	81	82	B102506	43	1.0	B102506
Carbonate (CO3)	mg/L	<1.0	<1.0	B102506	<1.0	1.0	B102506
Hydroxide (OH)	mg/L	<1.0	<1.0	B102506	<1.0	1.0	B102506
Total Sulphide	mg/L	<0.0018	<0.0018	B104312	<0.0018	0.0018	B104312
Chloride (CI)	mg/L	4.5	4.7	B102798	3.3	1.0	B103224
Sulphate (SO4)	mg/L	7.3	7.4	B102798	3.0	1.0	B103224
Nutrients	•						
Total Ammonia (N)	mg/L	<0.015	<0.015	B103325	<0.015	0.015	B106275
Orthophosphate (P)	mg/L	0.0033	<0.0030	B101105	0.0047	0.0030	B101105
Nitrate plus Nitrite (N)	mg/L	0.325	0.326	B101390	0.127	0.020	B101390
RDL = Reportable Detection	Limit						
$N/\Delta = Not Applicable$							

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BYQ319	BYQ319	BYQ320	BYQ321		
Sampling Date		2023/09/07	2023/09/07	2023/09/07	2023/09/07		
Sampling Date		12:15	12:15	12:40	15:15		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01		
	UNITS	WG-11222680-070923 -CXW-08	WG-11222680-070923 -CXW-08 Lab-Dup	WG-11222680-070923 -CXW-09	WG-11222680-070923 -CXW-10	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	N/A	<0.0050	<0.0050	0.0050	B101391
Calculated Parameters							
Nitrate (N)	mg/L	0.740	N/A	0.521	0.079	0.020	B099920
Sulphide (as H2S)	mg/L	<0.0020	N/A	<0.0020	<0.0020	0.0020	B100168
Field Parameters							
Field pH	рН	6.74	N/A	6.74	7.73	N/A	ONSITE
Field Temperature	°C	18.24	N/A	18.72	12.35	N/A	ONSITE
Misc. Inorganics							
Conductivity	uS/cm	450	460	250	76	2.0	B102512
Total Dissolved Solids	mg/L	300	N/A	140	36	10	B102287
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	B102506
Alkalinity (Total as CaCO3)	mg/L	78	78	100	34	1.0	B102506
Bicarbonate (HCO3)	mg/L	95	96	130	42	1.0	B102506
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	B102506
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	B102506
Total Sulphide	mg/L	<0.0018	N/A	<0.0018	<0.0018	0.0018	B104312
Chloride (CI)	mg/L	85	N/A	8.6	<1.0	1.0	B103224
Sulphate (SO4)	mg/L	5.8	N/A	7.3	2.9	1.0	B103224
Nutrients							
Total Ammonia (N)	mg/L	<0.015	N/A	<0.015	<0.015	0.015	B106275
Orthophosphate (P)	mg/L	0.0045	N/A	0.025	0.0055	0.0030	B101105
Nitrate plus Nitrite (N)	mg/L	0.740	N/A	0.521	0.079	0.020	B101390
1			· · · · · · · · · · · · · · · · · · ·				

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BYQ322		
Sampling Date		2023/09/08		
Jamping Date		08:25		
COC Number		700911-03-01		
	UNITS	WG-11222680-080923 -CXW-11	RDL	QC Batch
ANIONS				
Nitrite (N)	mg/L	<0.0050	0.0050	B101391
Calculated Parameters	•			
Nitrate (N)	mg/L	<0.020	0.020	B099920
Sulphide (as H2S)	mg/L	<0.0020	0.0020	B100168
Misc. Inorganics				
Conductivity	uS/cm	<2.0	2.0	B102512
Total Dissolved Solids	mg/L	<10	10	B102287
Anions				
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	B102506
Alkalinity (Total as CaCO3)	mg/L	<1.0	1.0	B102506
Bicarbonate (HCO3)	mg/L	<1.0	1.0	B102506
Carbonate (CO3)	mg/L	<1.0	1.0	B102506
Hydroxide (OH)	mg/L	<1.0	1.0	B102506
Total Sulphide	mg/L	<0.0018	0.0018	B105624
Chloride (CI)	mg/L	<1.0	1.0	B103224
Sulphate (SO4)	mg/L	<1.0	1.0	B103224
Nutrients	-			
Total Ammonia (N)	mg/L	0.025	0.015	B106275
Orthophosphate (P)	mg/L	<0.0030	0.0030	B101105
Nitrate plus Nitrite (N)	mg/L	<0.020	0.020	B101390
RDL = Reportable Detection	Limit	•		

Report Date: 2023/09/18

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

MISCELLANEOUS (WATER)

Bureau Veritas ID		BYQ312		BYQ313		
Sampling Date		2023/09/06		2023/09/06		
Sampling Date		16:00		16:55		
COC Number		700911-01-01		700911-01-01		
	UNITS	WG-11222680-060923	QC Batch	WG-11222680-060923	RDL	QC Batch
	UNITS	-CXW-01	QC Battii	-CXW-02	KDL	QC Battii
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	B100835	<0.0050	0.0050	B100837
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	B100835	<0.0050	0.0050	B100837
RDL = Reportable Detection Limit						

Bureau Veritas ID		BYQ314		BYQ315	BYQ316		
Sampling Date		2023/09/07 08:45		2023/09/07 09:55	2023/09/07 10:05		
COC Number		700911-01-01		700911-01-01	700911-01-01		
	UNITS	WG-11222680-070923 -CXW-03	QC Batch	WG-11222680-070923 -CXW-04	WG-11222680-070923 -CXW-05	RDL	QC Batch
Calculated Parameters	•	<u> </u>	l	l			
Calculated Parameters Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	B100835	<0.0050	<0.0050	0.0050	B100837
	mg/L mg/L	<0.0050 <0.0050	B100835 B100835	<0.0050 <0.0050			B100837 B100837

Bureau Veritas ID		BYQ317	BYQ318	BYQ319			
Sampling Date		2023/09/07	2023/09/07	2023/09/07			
Sampling Date		10:07	11:20	12:15			
COC Number		700911-01-01	700911-01-01	700911-01-01			
	UNITS	WG-11222680-070923	WG-11222680-070923	WG-11222680-070923	RDL	QC Batch	
	UNITS	-CXW-06	-CXW-07	-CXW-08	NDL	QC Batch	
Calculated Parameters							
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B100837	
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B100837	

Bureau Veritas ID		BYQ320	BYQ321		
Sampling Data		2023/09/07	2023/09/07		
Sampling Date		12:40	15:15		
COC Number		700911-01-01	700911-01-01		
	UNITS	WG-11222680-070923	WG-11222680-070923	BDI	QC Batch
	UNITS	-CXW-09	-CXW-10	RDL	QC Batch
Calculated Parameters	•	I			
Calculated Parameters Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	0.0050	B100837
	mg/L mg/L	<0.0050 <0.0050	<0.0050 <0.0050	0.0050 0.0050	B100837 B100837

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BYQ312	BYQ313	BYQ314	BYQ315		
Sampling Date		2023/09/06	2023/09/06	2023/09/07	2023/09/07		
		16:00	16:55	08:45	09:55		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01		
	UNITS	WG-11222680-060923 -CXW-01	WG-11222680-060923 -CXW-02	WG-11222680-070923 -CXW-03	WG-11222680-070923 -CXW-04	RDL	QC Batch
Calaudata d Dawawa atawa		-C/(VV-01	-CAW-02	-CAW-03	-CAW-04		
Calculated Parameters							
Low Molecular Weight PAH's	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B099705
High Molecular Weight PAH's	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B099705
Total PAH	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B099705
Polycyclic Aromatics							
Quinoline	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107283
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B107283
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
2-Methylnaphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B107283
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B107283
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107283
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107283
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B107283
Chrysene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107283
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	B107283
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	B107283
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	B107283
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107283
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B099707
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B099707
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B107289
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B107289
RDL = Reportable Detection Lin	nit						
<u>L</u>							ļ

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BYQ312	BYQ313	BYQ314	BYQ315		
Sampling Date		2023/09/06	2023/09/06	2023/09/07	2023/09/07		
Sampling Date		16:00	16:55	08:45	09:55		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01		
	UNITS	WG-11222680-060923	WG-11222680-060923	WG-11222680-070923	WG-11222680-070923	RDL	OC Botob
	UNITS	-CXW-01	-CXW-02	-CXW-03	-CXW-04	KDL	QC Batch
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	91	93	92	109	N/A	B107289
D10-ANTHRACENE (sur.)	%	85	88	88	89	N/A	B107283
D8-ACENAPHTHYLENE (sur.)	%	85	88	89	90	N/A	B107283
D8-NAPHTHALENE (sur.)	%	77	81	87	85	N/A	B107283
TERPHENYL-D14 (sur.)	%	78	80	78	81	N/A	B107283
DDI Danastalila Datastian II	٠	*					•

RDL = Reportable Detection Limit

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Calculated Parameters	Bureau Veritas ID		BYQ316		BYQ317	BYQ318		
10.05	Compling Data		2023/09/07		2023/09/07	2023/09/07		
Calculated Parameters UNITS WG-11222680-070923 CXW-05 VG-11222680-070923 CXW-07 RDL QC Bate CXW-06 CXW-07 RDL QC Bate CXW-06 CXW-07 RDL QC Bate CXW-07 RDL QC	Sampling Date		10:05		10:07	11:20		
Calculated Parameters	COC Number		700911-01-01		700911-01-01	700911-01-01		
Calculated Parameters Low Molecular Weight PAH's ug/L <0.10 8099705 <0.10 <0.10 0.10 809970 <0.050 8099705 <0.050 <0.050 <0.050 0.050 8099705 <0.050 <0.050 <0.050 <0.050 8099705 <0.050 <0.050 <0.050 <0.050 <0.050 8099705 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.05		UNITS		OC Batch			RDL	QC Batch
Low Molecular Weight PAH's ug/L <0.10			-CXW-05	40 - 000	-CXW-06	-CXW-07		4.
High Molecular Weight PAH's ug/L <0.050 8099705 <0.050 <0.050 0.050 809970 <0.010 <0.10 0.10 809970 <0.010 <0.10 <0.10 809970 <0.010 <0.010 <0.010 809970 <0.010 <0.010 <0.010 809970 <0.010 <0.010 <0.010 809970 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.01	Calculated Parameters							
Total PAH	Low Molecular Weight PAH's	ug/L	<0.10	B099705	<0.10	<0.10	0.10	B099705
Polycyclic Aromatics	High Molecular Weight PAH's	ug/L	<0.050	B099705	<0.050	<0.050	0.050	B099705
Quinoline ug/L <0.020 B107283 <0.020 <0.020 0.020 B10730 Naphthalene ug/L <0.10	Total PAH	ug/L	<0.10	B099705	<0.10	<0.10	0.10	B099705
Naphthalene ug/L <0.10 B107283 <0.10 <0.10 B10730 1-Methylnaphthalene ug/L <0.050	Polycyclic Aromatics							
1-Methylnaphthalene ug/L <0.050	Quinoline	ug/L	<0.020	B107283	<0.020	<0.020	0.020	B107307
2-Methylnaphthalene ug/L <0.10	Naphthalene	ug/L	<0.10	B107283	<0.10	<0.10	0.10	B107307
Acenaphthylene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730 Acenaphthene ug/L <0.050	1-Methylnaphthalene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Acenaphthene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730 Fluorene ug/L <0.050	2-Methylnaphthalene	ug/L	<0.10	B107283	<0.10	<0.10	0.10	B107307
Fluorene	Acenaphthylene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Phenanthrene	Acenaphthene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Anthracene	Fluorene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Acridine ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730 Fluoranthene ug/L <0.020	Phenanthrene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Fluoranthene	Anthracene	ug/L	<0.010	B107283	<0.010	<0.010	0.010	B107307
Pyrene	Acridine	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Benzo(a)anthracene ug/L <0.010 B107283 <0.010 <0.010 0.010 B10730	Fluoranthene	ug/L	<0.020	B107283	<0.020	<0.020	0.020	B107307
Chrysene ug/L <0.020 B107283 <0.020 <0.020 0.020 B10730 Benzo(b&j)fluoranthene ug/L <0.030	Pyrene	ug/L	<0.020	B107283	<0.020	<0.020	0.020	B107307
Benzo(b&j)fluoranthene ug/L <0.030 B107283 <0.030 <0.030 0.030 B10730	Benzo(a)anthracene	ug/L	<0.010	B107283	<0.010	<0.010	0.010	B107307
Benzo(k)fluoranthene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730 Benzo(a)pyrene ug/L <0.0050	Chrysene	ug/L	<0.020	B107283	<0.020	<0.020	0.020	B107307
Benzo(a)pyrene ug/L <0.0050 B107283 <0.0050 <0.0050 0.0050 B10730 Indeno(1,2,3-cd)pyrene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730 Dibenz(a,h)anthracene ug/L <0.0030 B107283 <0.0030 <0.0030 0.0030 B10730 Benzo(g,h,i)perylene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730 Calculated Parameters	Benzo(b&j)fluoranthene	ug/L	<0.030	B107283	<0.030	<0.030	0.030	B107307
Indeno(1,2,3-cd)pyrene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730	Benzo(k)fluoranthene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Dibenz(a,h)anthracene ug/L <0.0030 B107283 <0.0030 <0.0030 0.0030 B10730 Benzo(g,h,i)perylene ug/L <0.050	Benzo(a)pyrene	ug/L	<0.0050	B107283	<0.0050	<0.0050	0.0050	B107307
Benzo(g,h,i)perylene ug/L <0.050 B107283 <0.050 <0.050 0.050 B10730	Indeno(1,2,3-cd)pyrene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
Calculated Parameters LEPH (C10-C19 less PAH) mg/L <0.20	Dibenz(a,h)anthracene	ug/L	<0.0030	B107283	<0.0030	<0.0030	0.0030	B107307
LEPH (C10-C19 less PAH) mg/L <0.20 B099707 <0.20 <0.20 0.20 B09970 HEPH (C19-C32 less PAH) mg/L <0.20	Benzo(g,h,i)perylene	ug/L	<0.050	B107283	<0.050	<0.050	0.050	B107307
HEPH (C19-C32 less PAH) mg/L <0.20 B099707 <0.20 <0.20 0.20 B09970 Ext. Pet. Hydrocarbon EPH (C10-C19) mg/L <0.20 B107289 <0.20 <0.20 0.20 B10731 EPH (C19-C32) mg/L <0.20 B107289 <0.20 <0.20 0.20 B10731	Calculated Parameters							
Ext. Pet. Hydrocarbon EPH (C10-C19) mg/L <0.20	LEPH (C10-C19 less PAH)	mg/L	<0.20	B099707	<0.20	<0.20	0.20	B099707
EPH (C10-C19) mg/L <0.20 B107289 <0.20 <0.20 0.20 B10731 EPH (C19-C32) mg/L <0.20	HEPH (C19-C32 less PAH)	mg/L	<0.20	B099707	<0.20	<0.20	0.20	B099707
EPH (C19-C32) mg/L <0.20 B107289 <0.20 <0.20 0.20 B10731	Ext. Pet. Hydrocarbon							
, , , , , , , , , , , , , , , , , , , ,	EPH (C10-C19)	mg/L	<0.20	B107289	<0.20	<0.20	0.20	B107314
DDI - Depositable Detection Units	EPH (C19-C32)	mg/L	<0.20	B107289	<0.20	<0.20	0.20	B107314
kul = keportable Detection Limit	RDL = Reportable Detection Lin	nit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

	BYQ316		BYQ317	BYQ318		
	2023/09/07 10:05		2023/09/07 10:07	2023/09/07 11:20		
	700911-01-01		700911-01-01	700911-01-01		
UNITS	WG-11222680-070923 -CXW-05	QC Batch	WG-11222680-070923 -CXW-06	WG-11222680-070923 -CXW-07	RDL	QC Batch
%	111	B107289	93	98	N/A	B107314
%	87	B107283	98	97	N/A	B107307
%	87	B107283	93	91	N/A	B107307
%	81	B107283	79	75	N/A	B107307
%	78	B107283	77	73	N/A	B107307
	% % %	2023/09/07 10:05 700911-01-01 UNITS WG-11222680-070923 -CXW-05 % 111 % 87 % 87 % 87 % 81	2023/09/07 10:05 700911-01-01 UNITS WG-11222680-070923 -CXW-05 QC Batch % 111 B107289 % 87 B107283 % 87 B107283 % 81 B107283	2023/09/07 2023/09/07 10:05 10:07	2023/09/07 2023/09/07 2023/09/07 10:05 10:07 11:20	2023/09/07 2023/09/07 2023/09/07 10:05 10:07 11:20

RDL = Reportable Detection Limit

Report Date: 2023/09/18

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BYQ319	BYQ320	BYQ321	BYQ322		
Sampling Date		2023/09/07	2023/09/07	2023/09/07	2023/09/08		
Sampling Date		12:15	12:40	15:15	08:25		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-03-01		
	UNITS	WG-11222680-070923			WG-11222680-080923	RDL	QC Batch
		-CXW-08	-CXW-09	-CXW-10	-CXW-11		
Calculated Parameters							
Low Molecular Weight PAH's	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B099705
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B099705
Total PAH	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B099705
Polycyclic Aromatics							
Quinoline	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107307
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B107307
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
2-Methylnaphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B107307
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B107307
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107307
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107307
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B107307
Chrysene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B107307
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	B107307
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	B107307
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	B107307
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B107307
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B099707
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B099707
Ext. Pet. Hydrocarbon							
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B107314
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B107314
RDL = Reportable Detection Lin	nit						
							ļ

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

LEPH & HEPH WITH CSR/CCME PAH IN WATER (WATER)

Bureau Veritas ID		BYQ319	BYQ320	BYQ321	BYQ322		
Sampling Date		2023/09/07	2023/09/07	2023/09/07	2023/09/08		
Sampling Date		12:15	12:40	15:15	08:25		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-03-01		
	UNITS	WG-11222680-070923	WG-11222680-070923	WG-11222680-070923	WG-11222680-080923	RDL	OC Patch
	UNITS	-CXW-08	-CXW-09	-CXW-10	-CXW-11	KDL	QC Batch
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	92	93	93	92	N/A	B107314
D10-ANTHRACENE (sur.)	%	97	94	95	97	N/A	B107307
D8-ACENAPHTHYLENE (sur.)	%	92	90	92	92	N/A	B107307
D8-NAPHTHALENE (sur.)	%	76	75	94	78	N/A	B107307
TERPHENYL-D14 (sur.)	%	79	79	98	80	N/A	B107307
			·	•			

RDL = Reportable Detection Limit

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BYQ312	BYQ312	BYQ313	BYQ314		
Sampling Date		2023/09/06	2023/09/06	2023/09/06	2023/09/07		
COC Namehou		16:00	16:00	16:55	08:45		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01		
	UNITS	WG-11222680-060923 -CXW-01	WG-11222680-060923 -CXW-01 Lab-Dup	WG-11222680-060923 -CXW-02	WG-11222680-070923 -CXW-03	RDL	QC Batch
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	70.5	N/A	81.5	47.7	0.50	B099702
Elements	,			•			
Dissolved Mercury (Hg)	ug/L	0.0019	<0.0019	<0.0019	<0.0019	0.0019	B105296
Dissolved Metals by ICPMS		•		•			
Dissolved Aluminum (AI)	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	B105833
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	B105833
Dissolved Arsenic (As)	ug/L	0.32	0.32	<0.10	<0.10	0.10	B105833
Dissolved Barium (Ba)	ug/L	3.3	3.2	3.1	1.1	1.0	B105833
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Boron (B)	ug/L	52	52	<50	<50	50	B105833
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B105833
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Copper (Cu)	ug/L	0.79	0.83	<0.20	<0.20	0.20	B105833
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	B105833
Dissolved Manganese (Mn)	ug/L	<1.0	<1.0	2.4	<1.0	1.0	B105833
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Phosphorus (P)	ug/L	14	15	<10	<10	10	B105833
Dissolved Selenium (Se)	ug/L	<0.10	<0.10	<0.10	0.23	0.10	B105833
Dissolved Silicon (Si)	ug/L	6490	6390	7250	6650	100	B105833
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B105833
Dissolved Strontium (Sr)	ug/L	33.5	33.0	38.7	29.5	1.0	B105833
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B105833
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
		•		•			

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

CSR D. METALS W/CV HG-DISS (WATER)

Bureau Veritas ID		BYQ312	BYQ312	BYQ313	BYQ314		
Sampling Date		2023/09/06 16:00	2023/09/06 16:00	2023/09/06 16:55	2023/09/07 08:45		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01		
	UNITS	WG-11222680-060923 -CXW-01	WG-11222680-060923 -CXW-01 Lab-Dup	WG-11222680-060923 -CXW-02	WG-11222680-070923 -CXW-03	RDL	QC Batch
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Calcium (Ca)	mg/L	22.8	N/A	24.8	13.8	0.050	B099703
Dissolved Magnesium (Mg)	mg/L	3.32	N/A	4.73	3.23	0.050	B099703
Dissolved Potassium (K)	mg/L	0.361	N/A	0.315	0.190	0.050	B099703
Dissolved Sodium (Na)	mg/L	6.89	N/A	5.94	6.27	0.050	B099703
Dissolved Sulphur (S)	mg/L	<3.0	N/A	<3.0	<3.0	3.0	B099703

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

eau Veritas Job #: C371107 GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

Bureau Veritas ID		BYQ315	BYQ316	BYQ317	BYQ318		
Sampling Date		2023/09/07	2023/09/07	2023/09/07	2023/09/07		
Janipinig Date		09:55	10:05	10:07	11:20		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01		
	UNITS		WG-11222680-070923			RDL	QC Batch
		-CXW-04	-CXW-05	-CXW-06	-CXW-07		40 - 0000
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	36.2	69.2	68.8	33.2	0.50	B099702
Elements							
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	<0.0019	<0.0019	0.0019	B105296
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	B105833
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	B105833
Dissolved Arsenic (As)	ug/L	0.72	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Barium (Ba)	ug/L	2.0	2.0	1.9	<1.0	1.0	B105833
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	B105833
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B105833
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Copper (Cu)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	B105833
Dissolved Manganese (Mn)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Phosphorus (P)	ug/L	25	<10	<10	<10	10	B105833
Dissolved Selenium (Se)	ug/L	<0.10	0.14	0.11	<0.10	0.10	B105833
Dissolved Silicon (Si)	ug/L	3380	5960	5750	3430	100	B105833
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B105833
Dissolved Strontium (Sr)	ug/L	15.5	36.9	37.3	16.1	1.0	B105833
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B105833
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Vanadium (V)	ug/L	5.9	<5.0	<5.0	<5.0	5.0	B105833
RDL = Reportable Detection Lir	nit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

Bureau Veritas ID		BYQ315	BYQ316	BYQ317	BYQ318						
Sampling Date		2023/09/07 09:55	2023/09/07 10:05	2023/09/07 10:07	2023/09/07 11:20						
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-01-01						
	UNITS	WG-11222680-070923 -CXW-04	WG-11222680-070923 -CXW-05	WG-11222680-070923 -CXW-06	WG-11222680-070923 -CXW-07	RDL	QC Batch				
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833				
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833				
Dissolved Calcium (Ca)	mg/L	11.8	21.9	21.5	11.0	0.050	B099703				
Dissolved Magnesium (Mg)	mg/L	1.65	3.54	3.65	1.36	0.050	B099703				
Dissolved Potassium (K)	mg/L	0.165	0.225	0.238	0.124	0.050	B099703				
Dissolved Sodium (Na)	mg/L	0.932	3.57	3.61	1.21	0.050	B099703				
Dissolved Sulphur (S)	mg/L	<3.0	<3.0	<3.0	<3.0	3.0	B099703				
RDL = Reportable Detection Li	DL = Reportable Detection Limit										

Bureau Veritas Job #: C371107 GHD Limited
Report Date: 2023/09/18 Client Project

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

Bureau Veritas ID		BYQ319	BYQ320	BYQ321	BYQ322		
		2023/09/07	2023/09/07	2023/09/07	2023/09/08		
Sampling Date		12:15	12:40	15:15	08:25		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-03-01		
	UNITS	WG-11222680-070923	WG-11222680-070923	WG-11222680-070923	WG-11222680-080923	RDL	QC Batch
	ONTI	-CXW-08	-CXW-09	-CXW-10	-CXW-11	NDL	QC Batti
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	134	103	32.0	<0.50	0.50	B099702
Elements						•	•
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	<0.0019	<0.0019	0.0019	B105296
Dissolved Metals by ICPMS						•	•
Dissolved Aluminum (Al)	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	B105833
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	B105833
Dissolved Arsenic (As)	ug/L	0.12	0.17	<0.10	<0.10	0.10	B105833
Dissolved Barium (Ba)	ug/L	11.4	7.0	<1.0	<1.0	1.0	B105833
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Boron (B)	ug/L	<50	<50	<50	<50	50	B105833
Dissolved Cadmium (Cd)	ug/L	0.011	<0.010	<0.010	<0.010	0.010	B105833
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Copper (Cu)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B105833
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	B105833
Dissolved Manganese (Mn)	ug/L	13.8	2.8	<1.0	<1.0	1.0	B105833
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B105833
Dissolved Phosphorus (P)	ug/L	<10	26	<10	<10	10	B105833
Dissolved Selenium (Se)	ug/L	<0.10	0.16	<0.10	<0.10	0.10	B105833
Dissolved Silicon (Si)	ug/L	13300	9540	2930	<100	100	B105833
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B105833
Dissolved Strontium (Sr)	ug/L	96.6	53.2	14.8	<1.0	1.0	B105833
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B105833
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Uranium (U)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
RDL = Reportable Detection Lir	nit			_			

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

Bureau Veritas ID		BYQ319	BYQ320	BYQ321	BYQ322		
Sampling Date		2023/09/07 12:15	2023/09/07 12:40	2023/09/07 15:15	2023/09/08 08:25		
COC Number		700911-01-01	700911-01-01	700911-01-01	700911-03-01		
	UNITS	WG-11222680-070923 -CXW-08	WG-11222680-070923 -CXW-09	WG-11222680-070923 -CXW-10	WG-11222680-080923 -CXW-11	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B105833
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B105833
Dissolved Calcium (Ca)	mg/L	33.8	32.6	10.8	<0.050	0.050	B099703
Dissolved Magnesium (Mg)	mg/L	12.2	5.13	1.24	<0.050	0.050	B099703
Dissolved Potassium (K)	mg/L	0.976	0.476	0.135	<0.050	0.050	B099703
Dissolved Sodium (Na)	mg/L	22.9	4.94	0.765	<0.050	0.050	B099703
Dissolved Sulphur (S)	mg/L	<3.0	<3.0	<3.0	<3.0	3.0	B099703
RDL = Reportable Detection Li	mit						

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: CXW

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B107283	D10-ANTHRACENE (sur.)	2023/09/14	87	50 - 140	88	50 - 140	92	%		
B107283	D8-ACENAPHTHYLENE (sur.)	2023/09/14	88	50 - 140	93	50 - 140	92	%		
B107283	D8-NAPHTHALENE (sur.)	2023/09/14	85	50 - 140	77	50 - 140	77	%		
B107283	TERPHENYL-D14 (sur.)	2023/09/14	80	50 - 140	87	50 - 140	87	%		
B107289	O-TERPHENYL (sur.)	2023/09/14	92	60 - 140	92	60 - 140	92	%		
B107307	D10-ANTHRACENE (sur.)	2023/09/14	75	50 - 140	95	50 - 140	94	%		
B107307	D8-ACENAPHTHYLENE (sur.)	2023/09/14	85	50 - 140	91	50 - 140	88	%		
B107307	D8-NAPHTHALENE (sur.)	2023/09/14	80	50 - 140	71	50 - 140	66	%		
B107307	TERPHENYL-D14 (sur.)	2023/09/14	46 (6)	50 - 140	86	50 - 140	85	%		
B107314	O-TERPHENYL (sur.)	2023/09/14			94	60 - 140	91	%		
B101105	Orthophosphate (P)	2023/09/09	110	80 - 120	100	80 - 120	<0.0030	mg/L	NC (1)	20
B101390	Nitrate plus Nitrite (N)	2023/09/09	NC	80 - 120	104	80 - 120	<0.020	mg/L	1.3 (1)	25
B101391	Nitrite (N)	2023/09/09	NC	N/A	102	80 - 120	<0.0050	mg/L	1.4 (1)	20
B102287	Total Dissolved Solids	2023/09/12	101	80 - 120	102	80 - 120	<10	mg/L	1.3 (1)	20
B102506	Alkalinity (PP as CaCO3)	2023/09/12					<1.0	mg/L	NC (2)	20
B102506	Alkalinity (Total as CaCO3)	2023/09/12			98	80 - 120	<1.0	mg/L	0.53 (2)	20
B102506	Bicarbonate (HCO3)	2023/09/12					<1.0	mg/L	0.53 (2)	20
B102506	Carbonate (CO3)	2023/09/12					<1.0	mg/L	NC (2)	20
B102506	Hydroxide (OH)	2023/09/12					<1.0	mg/L	NC (2)	20
B102512	Conductivity	2023/09/12			100	90 - 110	<2.0	uS/cm	1.1 (2)	10
B102520	Alkalinity (PP as CaCO3)	2023/09/12					<1.0	mg/L	NC (3)	20
B102520	Alkalinity (Total as CaCO3)	2023/09/12			101	80 - 120	<1.0	mg/L	4.7 (3)	20
B102520	Bicarbonate (HCO3)	2023/09/12					<1.0	mg/L	4.7 (3)	20
B102520	Carbonate (CO3)	2023/09/12					<1.0	mg/L	NC (3)	20
B102520	Hydroxide (OH)	2023/09/12					<1.0	mg/L	NC (3)	20
B102524	Conductivity	2023/09/12			100	90 - 110	<2.0	uS/cm	0.22 (3)	10
B102798	Chloride (CI)	2023/09/11	NC	80 - 120	100	80 - 120	<1.0	mg/L	1.3 (1)	20
B102798	Sulphate (SO4)	2023/09/11	NC	80 - 120	97	80 - 120	<1.0	mg/L	0.0021 (1)	20
B103224	Chloride (CI)	2023/09/12	109 (4)	80 - 120	97	80 - 120	<1.0	mg/L	NC (5)	20
B103224	Sulphate (SO4)	2023/09/12	107 (4)	80 - 120	97	80 - 120	<1.0	mg/L	2.3 (5)	20
B103325	Total Ammonia (N)	2023/09/11	NC	80 - 120	112	80 - 120	<0.015	mg/L	7.5 (1)	20

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: CXW

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B104312	Total Sulphide	2023/09/12	63 (6)	80 - 120	94	80 - 120	<0.0018	mg/L	13 (1)	20
B105296	Dissolved Mercury (Hg)	2023/09/13	88 (7)	80 - 120	99	80 - 120	< 0.0019	ug/L	2.1 (8)	20
B105624	Total Sulphide	2023/09/13	89	80 - 120	107	80 - 120	<0.0018	mg/L	NC (1)	20
B105833	Dissolved Aluminum (Al)	2023/09/14	88 (9)	80 - 120	91	80 - 120	<3.0	ug/L	NC (10)	20
B105833	Dissolved Antimony (Sb)	2023/09/14	98 (9)	80 - 120	101	80 - 120	<0.50	ug/L	NC (10)	20
B105833	Dissolved Arsenic (As)	2023/09/14	98 (9)	80 - 120	99	80 - 120	<0.10	ug/L	1.3 (10)	20
B105833	Dissolved Barium (Ba)	2023/09/14	93 (9)	80 - 120	98	80 - 120	<1.0	ug/L	2.1 (10)	20
B105833	Dissolved Beryllium (Be)	2023/09/14	91 (9)	80 - 120	96	80 - 120	<0.10	ug/L	NC (10)	20
B105833	Dissolved Bismuth (Bi)	2023/09/14	91 (9)	80 - 120	99	80 - 120	<1.0	ug/L	NC (10)	20
B105833	Dissolved Boron (B)	2023/09/14	85 (9)	80 - 120	87	80 - 120	<50	ug/L	0.77 (10)	20
B105833	Dissolved Cadmium (Cd)	2023/09/14	97 (9)	80 - 120	99	80 - 120	<0.010	ug/L	NC (10)	20
B105833	Dissolved Chromium (Cr)	2023/09/14	96 (9)	80 - 120	99	80 - 120	<1.0	ug/L	NC (10)	20
B105833	Dissolved Cobalt (Co)	2023/09/14	93 (9)	80 - 120	97	80 - 120	<0.20	ug/L	NC (10)	20
B105833	Dissolved Copper (Cu)	2023/09/14	93 (9)	80 - 120	98	80 - 120	<0.20	ug/L	4.8 (10)	20
B105833	Dissolved Iron (Fe)	2023/09/14	97 (9)	80 - 120	99	80 - 120	<5.0	ug/L	NC (10)	20
B105833	Dissolved Lead (Pb)	2023/09/14	94 (9)	80 - 120	100	80 - 120	<0.20	ug/L	NC (10)	20
B105833	Dissolved Lithium (Li)	2023/09/14	85 (9)	80 - 120	93	80 - 120	<2.0	ug/L	NC (10)	20
B105833	Dissolved Manganese (Mn)	2023/09/14	97 (9)	80 - 120	100	80 - 120	<1.0	ug/L	NC (10)	20
B105833	Dissolved Molybdenum (Mo)	2023/09/14	99 (9)	80 - 120	101	80 - 120	<1.0	ug/L	NC (10)	20
B105833	Dissolved Nickel (Ni)	2023/09/14	96 (9)	80 - 120	102	80 - 120	<1.0	ug/L	NC (10)	20
B105833	Dissolved Phosphorus (P)	2023/09/14	93 (9)	80 - 120	94	80 - 120	<10	ug/L	6.2 (10)	20
B105833	Dissolved Selenium (Se)	2023/09/14	97 (9)	80 - 120	99	80 - 120	<0.10	ug/L	NC (10)	20
B105833	Dissolved Silicon (Si)	2023/09/14	NC (9)	80 - 120	102	80 - 120	<100	ug/L	1.6 (10)	20
B105833	Dissolved Silver (Ag)	2023/09/14	98 (9)	80 - 120	100	80 - 120	<0.020	ug/L	NC (10)	20
B105833	Dissolved Strontium (Sr)	2023/09/14	95 (9)	80 - 120	98	80 - 120	<1.0	ug/L	1.6 (10)	20
B105833	Dissolved Thallium (TI)	2023/09/14	96 (9)	80 - 120	97	80 - 120	<0.010	ug/L	NC (10)	20
B105833	Dissolved Tin (Sn)	2023/09/14	99 (9)	80 - 120	101	80 - 120	<5.0	ug/L	NC (10)	20
B105833	Dissolved Titanium (Ti)	2023/09/14	98 (9)	80 - 120	100	80 - 120	<5.0	ug/L	NC (10)	20
B105833	Dissolved Uranium (U)	2023/09/14	101 (9)	80 - 120	103	80 - 120	<0.10	ug/L	NC (10)	20
B105833	Dissolved Vanadium (V)	2023/09/14	99 (9)	80 - 120	101	80 - 120	<5.0	ug/L	NC (10)	20
B105833	Dissolved Zinc (Zn)	2023/09/14	100 (9)	80 - 120	105	80 - 120	<5.0	ug/L	NC (10)	20

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B105833	Dissolved Zirconium (Zr)	2023/09/14	97 (9)	80 - 120	96	80 - 120	<0.10	ug/L	NC (10)	20
B106275	Total Ammonia (N)	2023/09/13	111	80 - 120	106	80 - 120	<0.015	mg/L	NC (1)	20
B107283	1-Methylnaphthalene	2023/09/14	92	50 - 140	84	50 - 140	<0.050	ug/L	NC (1)	40
B107283	2-Methylnaphthalene	2023/09/14	90	50 - 140	83	50 - 140	<0.10	ug/L	NC (1)	40
B107283	Acenaphthene	2023/09/14	93	50 - 140	86	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Acenaphthylene	2023/09/14	94	50 - 140	91	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Acridine	2023/09/14	97	50 - 140	91	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Anthracene	2023/09/14	95	50 - 140	98	50 - 140	<0.010	ug/L	NC (1)	40
B107283	Benzo(a)anthracene	2023/09/14	88	50 - 140	97	50 - 140	<0.010	ug/L	NC (1)	40
B107283	Benzo(a)pyrene	2023/09/14	83	50 - 140	99	50 - 140	<0.0050	ug/L	NC (1)	40
B107283	Benzo(b&j)fluoranthene	2023/09/14	78	50 - 140	80	50 - 140	<0.030	ug/L	NC (1)	40
B107283	Benzo(g,h,i)perylene	2023/09/14	32 (6)	50 - 140	89	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Benzo(k)fluoranthene	2023/09/14	83	50 - 140	100	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Chrysene	2023/09/14	92	50 - 140	89	50 - 140	<0.020	ug/L	NC (1)	40
B107283	Dibenz(a,h)anthracene	2023/09/14	32 (6)	50 - 140	100	50 - 140	<0.0030	ug/L	NC (1)	40
B107283	Fluoranthene	2023/09/14	76	50 - 140	101	50 - 140	<0.020	ug/L	NC (1)	40
B107283	Fluorene	2023/09/14	93	50 - 140	91	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Indeno(1,2,3-cd)pyrene	2023/09/14	34 (6)	50 - 140	110	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Naphthalene	2023/09/14	95	50 - 140	86	50 - 140	<0.10	ug/L	NC (1)	40
B107283	Phenanthrene	2023/09/14	94	50 - 140	82	50 - 140	<0.050	ug/L	NC (1)	40
B107283	Pyrene	2023/09/14	76	50 - 140	101	50 - 140	<0.020	ug/L	NC (1)	40
B107283	Quinoline	2023/09/14	109	50 - 140	110	50 - 140	<0.020	ug/L	NC (1)	40
B107289	EPH (C10-C19)	2023/09/14	90	60 - 140	94	70 - 130	<0.20	mg/L	NC (1)	30
B107289	EPH (C19-C32)	2023/09/14	97	60 - 140	95	70 - 130	<0.20	mg/L	NC (1)	30
B107307	1-Methylnaphthalene	2023/09/15	76	50 - 140	82	50 - 140	<0.050	ug/L	NC (1)	40
B107307	2-Methylnaphthalene	2023/09/15	77	50 - 140	76	50 - 140	<0.10	ug/L	NC (1)	40
B107307	Acenaphthene	2023/09/15	78	50 - 140	82	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Acenaphthylene	2023/09/15	81	50 - 140	82	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Acridine	2023/09/15	88	50 - 140	85	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Anthracene	2023/09/15	72	50 - 140	85	50 - 140	<0.010	ug/L	NC (1)	40
B107307	Benzo(a)anthracene	2023/09/15	51	50 - 140	81	50 - 140	<0.010	ug/L	NC (1)	40

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

			Matrix Spike		Spiked Blank		Method Blank		RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B107307	Benzo(a)pyrene	2023/09/15	33 (6)	50 - 140	86	50 - 140	<0.0050	ug/L	NC (1)	40
B107307	Benzo(b&j)fluoranthene	2023/09/15	33 (6)	50 - 140	82	50 - 140	<0.030	ug/L	NC (1)	40
B107307	Benzo(g,h,i)perylene	2023/09/15	24 (6)	50 - 140	83	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Benzo(k)fluoranthene	2023/09/15	30 (6)	50 - 140	83	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Chrysene	2023/09/15	52	50 - 140	83	50 - 140	<0.020	ug/L	NC (1)	40
B107307	Dibenz(a,h)anthracene	2023/09/15	26 (6)	50 - 140	84	50 - 140	<0.0030	ug/L	NC (1)	40
B107307	Fluoranthene	2023/09/15	65	50 - 140	66	50 - 140	<0.020	ug/L	NC (1)	40
B107307	Fluorene	2023/09/15	78	50 - 140	83	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Indeno(1,2,3-cd)pyrene	2023/09/15	26 (6)	50 - 140	85	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Naphthalene	2023/09/15	78	50 - 140	76	50 - 140	<0.10	ug/L	NC (1)	40
B107307	Phenanthrene	2023/09/15	71	50 - 140	86	50 - 140	<0.050	ug/L	NC (1)	40
B107307	Pyrene	2023/09/15	62	50 - 140	77	50 - 140	<0.020	ug/L	NC (1)	40
B107307	Quinoline	2023/09/15	95	50 - 140	94	50 - 140	<0.020	ug/L	NC (1)	40
B107314	EPH (C10-C19)	2023/09/14			93	70 - 130	<0.20	mg/L	NC (1)	30

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

			Matrix	Spike	Spiked	Blank	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B107314	EPH (C19-C32)	2023/09/14			97	70 - 130	<0.20	mg/L	NC (1)	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Duplicate Parent ID [BYQ319-01]
- (3) Duplicate Parent ID [BYQ314-01]
- (4) Matrix Spike Parent ID [BYQ315-01]
- (5) Duplicate Parent ID [BYQ315-01]
- (6) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (7) Matrix Spike Parent ID [BYQ313-04]
- (8) Duplicate Parent ID [BYQ312-04]
- (9) Matrix Spike Parent ID [BYQ312-03]
- (10) Duplicate Parent ID [BYQ312-03]

Client Project #: 11222680-15.1 Site Location: NEW LANDFILL Your P.O. #: 735-002640-4 Sampler Initials: CXW

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

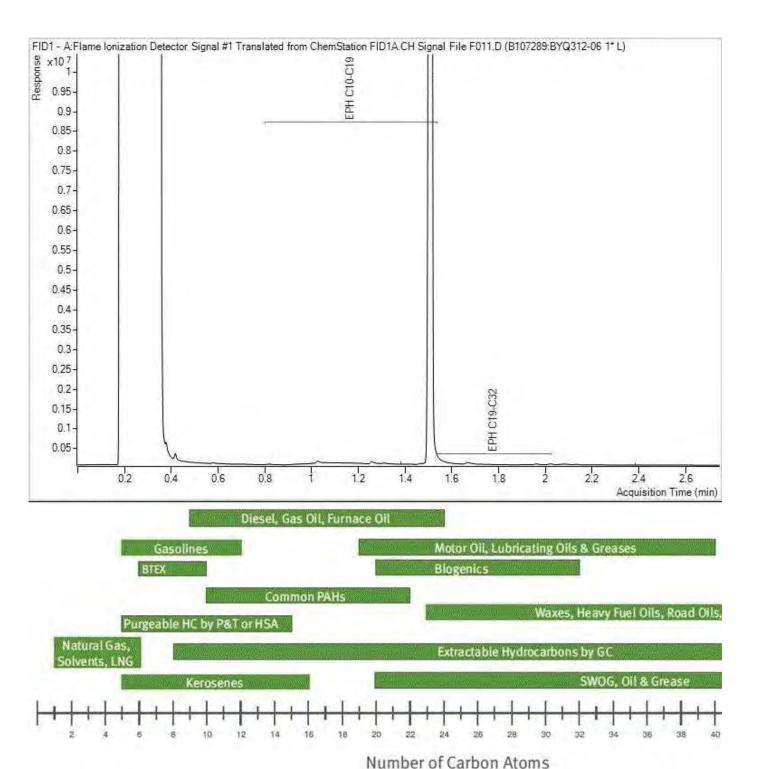
David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

 $Ghayasuddin\ Khan,\ M.Sc.,\ P.Chem.,\ QP,\ Scientific\ Specialist,\ Inorganics$

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

erici i	-	WYORD	6.10	_	-			Report Itals	errent)	ior	-	_	-			Proper	internal	ioe		T	Laborato	ry Lise Only	_
1600	#153 GHD LI					Consessivy M	- GHO L	td.					- 3	Comment &		C00090					(Bureau Varities deb #	fin	uttle Dritte
All Lancon	AP Involces - I		-			Contact No.	Stophanie B	kerton					-	PO B		735-002	_					1.0	princing.
	455 PHILLIP S	1			_	ACIDINA	100 -138				1111	-	-	Propert 6		112226	_	tractus		-	Contra Of Contrary Research	- Bu	POSH I
	(519) 884-051			9) 725-13	394	Phone	ti 519 3				Mile	-		Project Name Blin #		Ground	water	muns			THE REPORT OF THE PARTY OF THE	HITH .	
	APwyolces 73					Enal	NationalED	Support(gma	notamic	a,stephi	anie berto	on@g	Services By		CXL	1,	DT			C8709911-G1-C1	Dis Dis	only Avion
fryon	tr's					Sprio	of the contract					1/40	W, VISIO R	SCHOOL THEF	PLEASE	ES/ECIPI	9	-			Turntround Time (the red to reach their	
ctss													Cale			5	2				Preside projekte achierach	olion for nam groyects	٠
-									Ш	NOS						Read	PAH				tion for the TAT		
COME									2	MO2			55.		CVHB	F	subtracted				AT+57 Working stress for months	160	
TIC Water	Cherry								5		12		100		5	0	Stra			Plane rev	t: Disnoped 197 for revenue more o Vict your Project Manager for dista	word case (STIC) was blow	matien
Other		_							100	804	America	3	Dezin	8	8	8	WEN BY		8		the Rash TAT of opposes to under		
									歪	D ×	9	Sulphide + H25 Cald	G-P-D	A (Total)	Metals	Pile	3		12	DAY	Day June	Disk Hingares	
Street, or	-			and the same	- W- W	observator.	and the second	-	골	Pote	8	8	8	9	28	D SS	серимери	표	Target 1	Rush Cont	Ivmster Market	11.3	
BANFLE	S MUST DE REPT O	OKBL (*	19°C) PROM TIME C	if Sample	IG UNITIL DE	LIVERY TO I	SUREAU VERSTAB	_	ă	Cando N+N.	Parle	1 1	Sulphi	ofun	Disabi	Total P	F	990	Tr .	do letter	10	(20 Mg Apr 4)	1
Sergia	\$moor(use		Sey-(Local)			- Emerica	16:00	Mena	2	-	61	历	49	1	-		-	14.	E				
	W6	-112	22680-0600	173-0	av 01	23 z	1	GW	Y	X	X	X	X	X	X	X	X	7.89	17.57	7			
	NG	-112	12680-0601	123-CX	w-02	5446	16:55	EN	11	1	1	1	1		1		1	7:37	10.61	1			
	we	115	12680-0669 12690-0609 122690-079	0913-0	xu-09	Spt 7	0845	GW		U,								6.61	11.02		Sampled , Supr	+ 7,73	
		-	1 6	-	1 -0		09585	GW	П										10.56		- 1		
				-	105		1005	6W	Ħ			Ħ					1	6.74	11.84		32		
U	-				-04	1	1007	1000	Ħ				H	11		1		10.	(1.84	1			
8	-	-	1	-	-	1 0		GW	H	-	1	++-	1	++			-			+		_	
71107_COC		-	1 -	-	-07	1	1120	6W	1	1	1	1	+	11	-	-	-	7.32	1234	1			_
371	5-1	+		-	-08		1215	GW	1		-	1		-	2)			6.74	1	-			_
0		-	-	+	-09		1240	GW	1					1				-	18.72				
	1	-	V -	1 -1	1-10	V	1515#	6W	1	V	V	V	1	1	1	1	V	1733	1235	4	V		
· mag	Hour our	NAME OF STREET	n		L TAST	8 16				* 700				23/09		16:3		rk ioned proj d knievolet	Teasure	ev I	Leb Line Only	Comment Asset In-	-
			Cardy Wor	3 2	3/09/0	0 16	35 60mm	RUSSELL	10	MUNK	NU.	_	-	23/04	40	10.5			17	7894	arretime (*C) or Propage		tio 1

Property Consult (2016) or

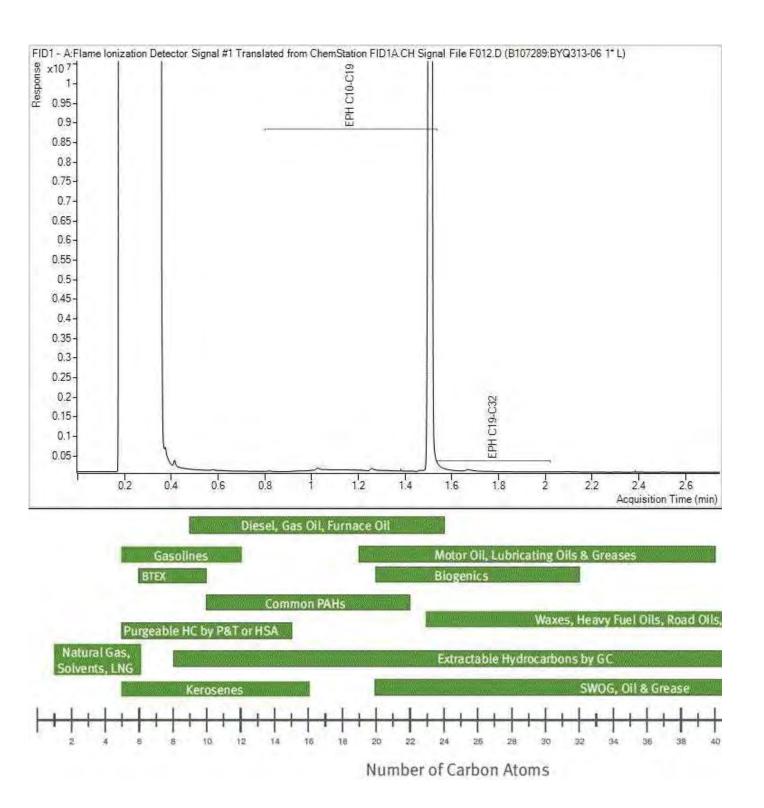

		SWOICE TO:				Report in	day of the	_			31		_	Propert is	1	_	_	-		3/2
-	#160 GHD LI		_		- GAD	Ltd.	De mario	ME.	_	-	-	- Taraba (1)	_	C30090	through the	0.9	_	-	Laboratory Use (
Name	AP Invoices -			Consult Name	Est. Control			-	-	1		Ducklich # P.O.B.		735-0026	940-3	-		-	District Applies with a	Buttle Order 6
Hinse	455 PHILLIP S			Accress	100-13		716	Ave	nue			France 6		1122208						LUUTHORD
	WATERLOO				Vanco	wer	BC	VS	T	146		Proper House	9	Uplas		comb	autin	1	Chairr Of Clustedy Record	Project Manag
	(519) 884-051	The second residence is not a second residence in the	25-1394	Pine	+1513	340	-397	Fax.	and the second	at batter	-000	500		Groundw		-			I WELLBERT STREET, STR	Bridg Anders
	APinvoices-73	octignu com	-	fou	NationalED	riambou	T T	ocam.ra	1,510000			Served By	PETAGE	CALM		1	-	-	CM(000+1-05-01	
200	Zuese.		-	20104	POPLETON.		1 1			7040		T T	PALPINE.	200					Turnetment Time (TAT) Req Please provide advance notice for no	
COME COME SCV	me Outring						2	SD4, ND2, NO3.	12	aic	de, Un-locized (as H2S) (Calc)		wen CV Hg.	olds (Filt Residue	subtracting PAHs.			(test to each dissessort to	Maintenery TAT: plant 8 Housh TAT in year scoolines; TAT 4-5-T Windows cusps for monet status in Elementary TAT for couldn't been each on ACC last your Propert Manager for defails.	
-	ES BUST DE KEPT (DOOL (< 10°C) FROM TIME OF SAL		LLYERY TO GU	READ VEHIFAS	Meli	481	Denductivity, Cl. 8 N+N, POs	Speciated Alkalinity	Supplice - H28 Calc	Sulphide, Un-local	Ammonia-N (Total)	Dissolved Metals Hardness	Total Dissolved Solids (FIII	LEPHINEPH with subtra	Fleid pH	Field Temperature	(DAY	Silc Road TAY (F applies to entire extenses) 2 Day 3 Day 30 Day 34th Mergan Amazon Microse (mail	
Ita-	-1122	80-080923-CA	XW-11	sept 8,	0825	W	4	X	×	X	X	X	X	X	X	MA	NA	7		
				54															C371107_COC	
			2				H	-			-		1		-					
	. 1		7.7				10													
		aren Llora	22/01/0	1 1635	Africa.	RUSSEI	L S	MAK				23/00/		16.36	A jám doi á	used and Emilies	Test face	tion Time	Labourding Carroy Se	e forc in Disself

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-060923-CXW-01

EPH in Water when PAH required Chromatogram

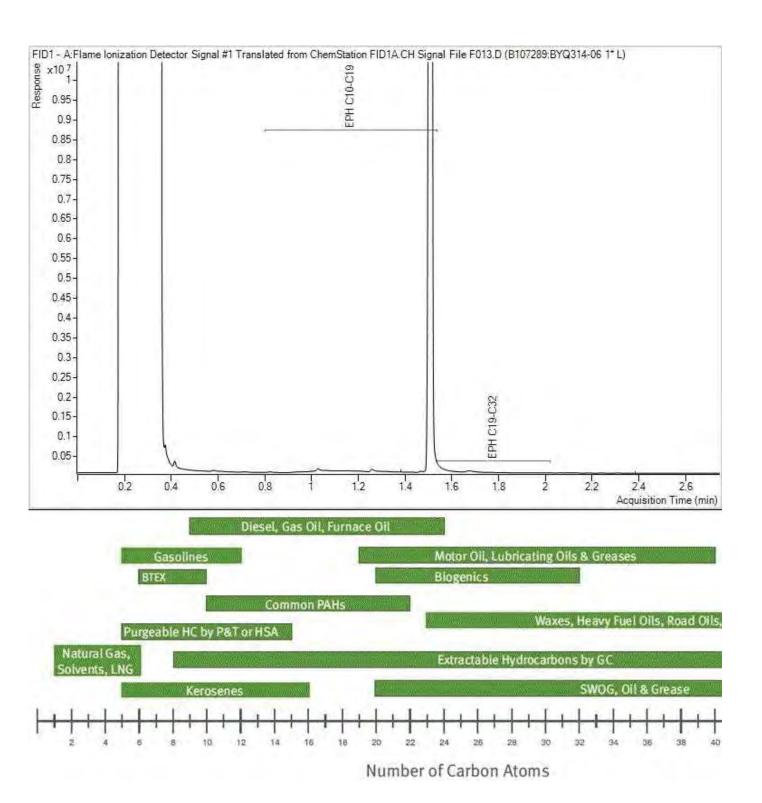


GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-060923-CXW-02

EPH in Water when PAH required Chromatogram



GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-03

EPH in Water when PAH required Chromatogram

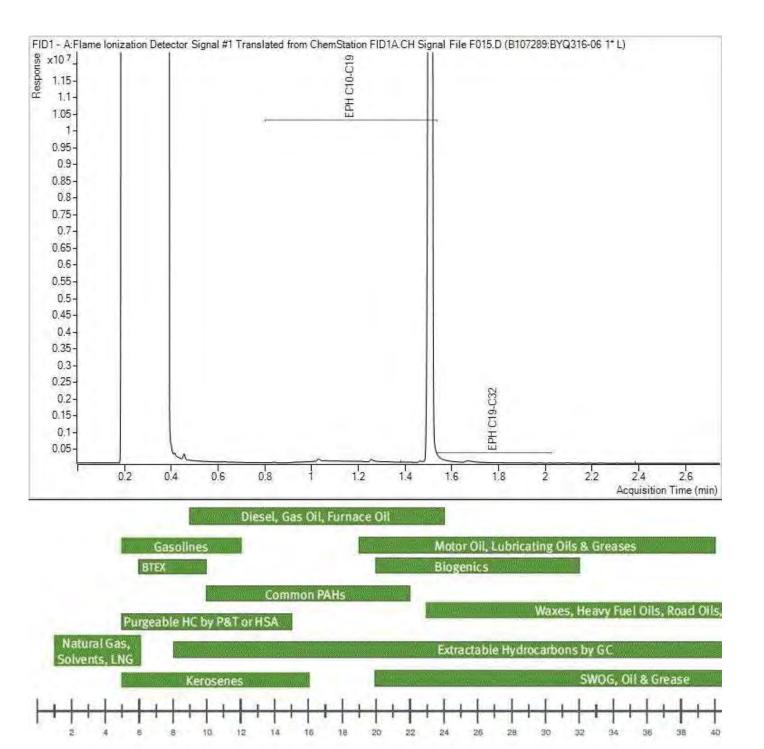


GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-04

EPH in Water when PAH required Chromatogram



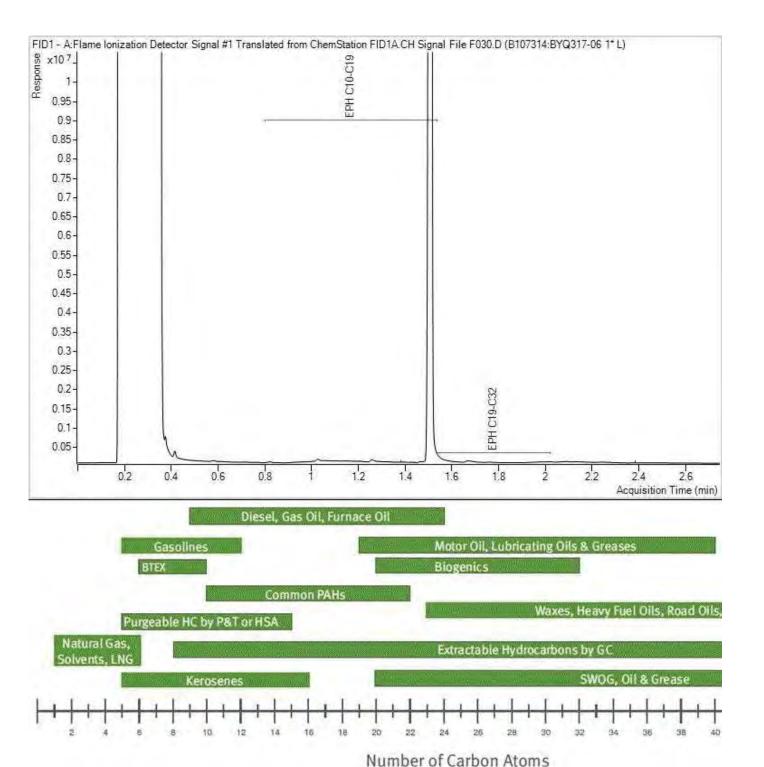
GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-05

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

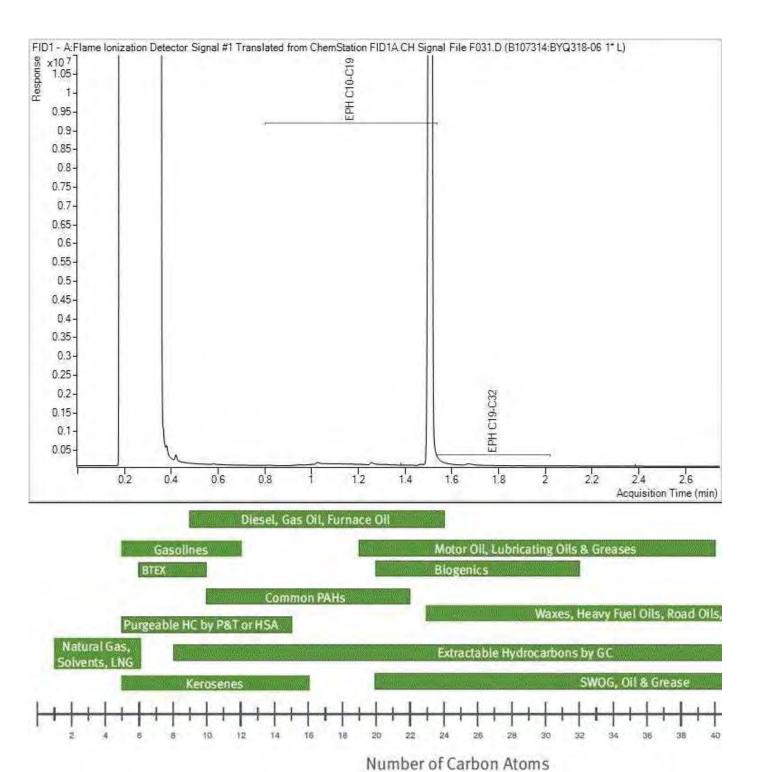

Number of Carbon Atoms

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-06

EPH in Water when PAH required Chromatogram

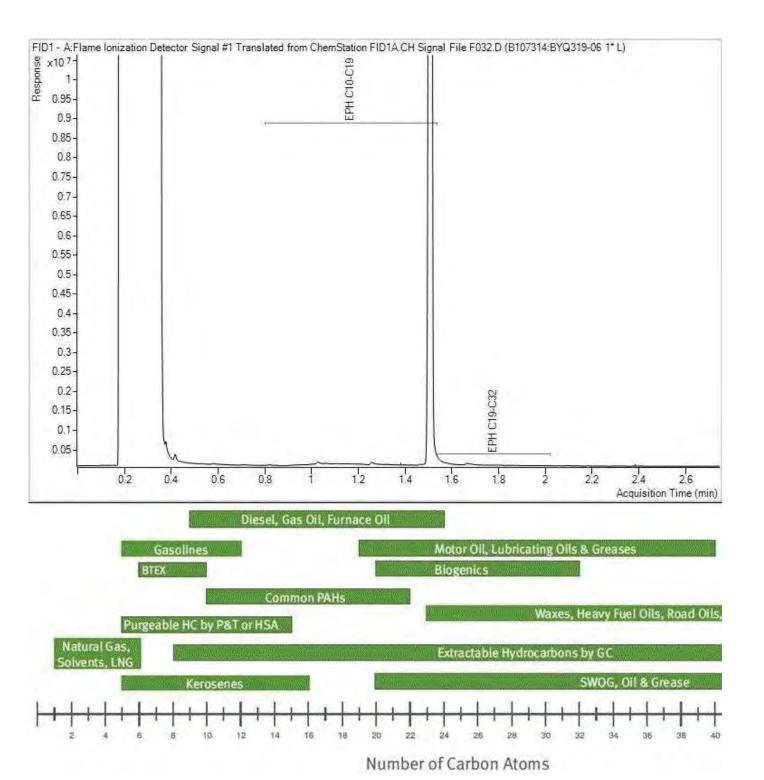


GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-07

EPH in Water when PAH required Chromatogram



GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-08

EPH in Water when PAH required Chromatogram

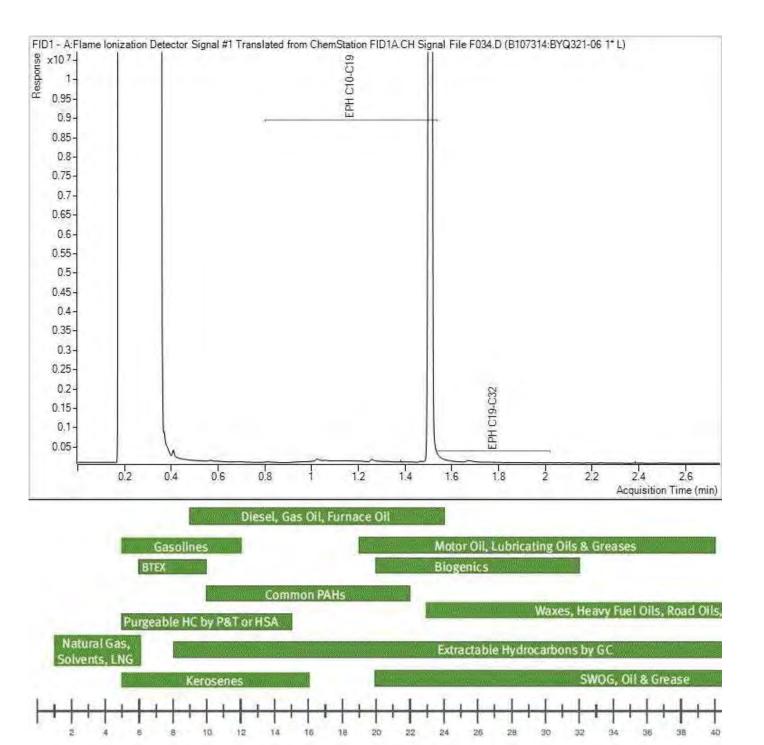


GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-09

EPH in Water when PAH required Chromatogram



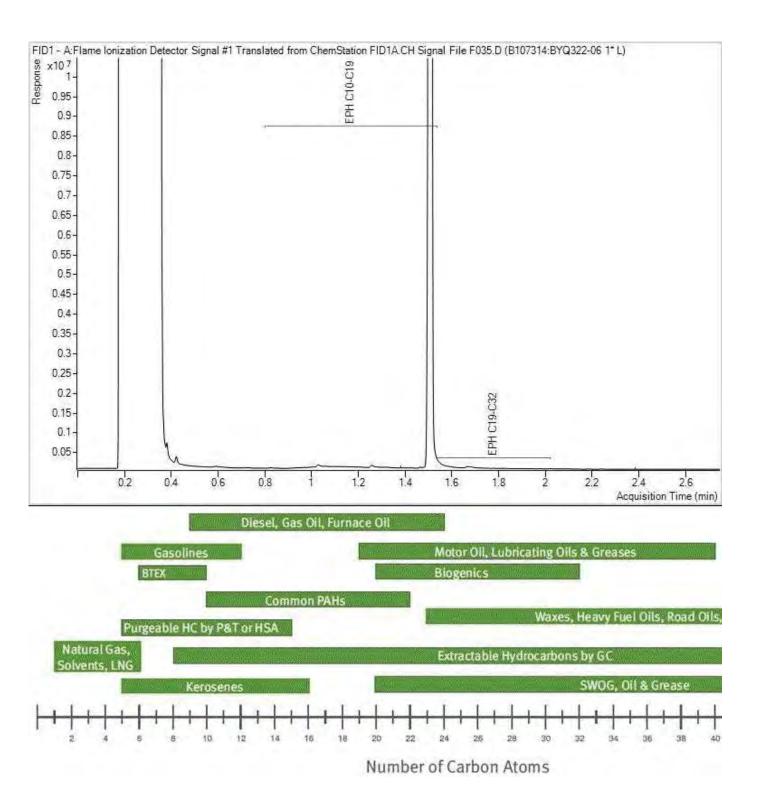
GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-070923-CXW-10

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Number of Carbon Atoms

GHD Limited

Client Project #: 11222680-15.1 Site Reference: NEW LANDFILL

Client ID: WG-11222680-080923-CXW-11

EPH in Water when PAH required Chromatogram

Your P.O. #: 735-002640-5 Your Project #: 11222680-15.1 Site#: GROUND WATER

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your C.O.C. #: 705547-01-01

Report Date: 2023/12/05 Report #: R3436670

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C397191 Received: 2023/11/29, 09:55

Attention: Stephanie Berton

N2L 3X2

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA

Sample Matrix: Water # Samples Received: 5

# Jampies Neceived. J					
Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH (1)	- Quantity	N/A		BBY6SOP-00026	SM 24 2320 B m
Chloride/Sulphate by Auto Colourimetry (1)	5	N/A	, ,	BBY6SOP-00011 /	SM24-4500-CI/SO4-E m
Conductivity @25C (1)	5	N/A	2023/11/30	BBY6SOP-00017 BBY6SOP-00026	SM 24 2510 B m
Sulphide (as H2S) (2)	5	N/A	2023/12/04		Auto Calc
Un-ionized Hydrogen Sulphide as S Calc (1)	5	N/A	2023/12/04	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3) (1)	5	N/A	2023/12/05	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CV (1, 3)	5	2023/12/05	2023/12/05	AB SOP-00084	BCMOE BCLM Oct2013 m
EPH in Water when PAH required (1)	5	2023/12/01	2023/12/01	BBY8SOP-00029	BCMOE BCLM Sep2017 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.) (1)	5	N/A	2023/12/05	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (1, 3)	5	N/A	2023/12/04	BBY7SOP-00002	EPA 6020b R2 m
Ammonia-N (Total) (1)	5	N/A	2023/12/01	AB SOP-00007	SM 24 4500 NH3 A G m
Nitrate + Nitrite (N) (1)	5	N/A	2023/11/30	BBY6SOP-00010	SM 24 4500-NO3- H m
Nitrite (N) Regular Level Water (1)	5	N/A	2023/11/30	BBY6SOP-00010	SM 24 4500-NO2- m
Nitrogen - Nitrate (as N) (1)	5	N/A	2023/11/30	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM) (1)	5	2023/12/01	2023/12/02	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (1, 4)	5	N/A	2023/12/02	BBY WI-00033	Auto Calc
Orthophosphate by Automated Analyzer (1, 5)	5	N/A	2023/11/30	BBY6SOP-00013	SM 24 4500-P E m
Total Sulphide (2)	5	N/A	2023/12/04	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue) (1)	5	2023/11/30	2023/12/01	BBY6SOP-00033	SM 24 2540 C m
EPH less PAH in Water by GC/FID (1, 6)	5	N/A	2023/12/02	BBY WI-00033	Auto Calc
Field pH (1)	5	N/A	2023/12/01		
Field Temperature (1)	5	N/A	2023/12/01		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2 Your P.O. #: 735-002640-5 Your Project #: 11222680-15.1 Site#: GROUND WATER

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your C.O.C. #: 705547-01-01

Report Date: 2023/12/05

Report #: R3436670 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C397191 Received: 2023/11/29, 09:55

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Vancouver, 4606 Canada Way, Burnaby, BC, V5G 1K5
- (2) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (3) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (4) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthhene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (5) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.

(6) LEPH = EPH (C10 to C19) - (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene) HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

Encryption Key

Bureau Veritas

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist-Emergency Spill Response Email: brody.andersen@bureauveritas.com Phone# (780)742-1616

_____ This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Food laboratory operations.

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFQ135	CFQ135	CFQ136		
Sampling Date		2023/11/27	2023/11/27	2023/11/27		
Sampling Date		13:10	13:10	14:15		
COC Number		705547-01-01	705547-01-01	705547-01-01		
	UNITS	WG-11222680-271123 -KH-01	WG-11222680-271123 -KH-01 Lab-Dup	WG-11222680-271123 -KH-02	RDL	QC Batch
ANIONS						
Nitrite (N)	mg/L	<0.0050	N/A	<0.0050	0.0050	B219129
Calculated Parameters		1	I.	1		
Dissolved Hardness (CaCO3)	mg/L	32.0	N/A	156	0.50	B218178
Nitrate (N)	mg/L	0.044	N/A	0.804	0.020	B218461
Sulphide (as H2S)	mg/L	<0.0020	N/A	<0.0020	0.0020	B217989
Low Molecular Weight PAH`s	ug/L	<0.10	N/A	<0.10	0.10	B218123
High Molecular Weight PAH`s	ug/L	<0.050	N/A	<0.050	0.050	B218123
Total PAH	ug/L	<0.10	N/A	<0.10	0.10	B218123
Field Parameters					•	
Field pH	рН	7.63	N/A	7.98	N/A	ONSITE
Field Temperature	°C	17.08	N/A	10.84	N/A	ONSITE
Misc. Inorganics					•	
Conductivity	uS/cm	68	N/A	360	2.0	B219142
Total Dissolved Solids	mg/L	56	N/A	220	10	B218644
Anions						
Alkalinity (PP as CaCO3)	mg/L	<1.0	N/A	<1.0	1.0	B219127
Alkalinity (Total as CaCO3)	mg/L	29	N/A	110	1.0	B219127
Bicarbonate (HCO3)	mg/L	36	N/A	140	1.0	B219127
Carbonate (CO3)	mg/L	<1.0	N/A	<1.0	1.0	B219127
Hydroxide (OH)	mg/L	<1.0	N/A	<1.0	1.0	B219127
Total Sulphide	mg/L	<0.0018	<0.0018	<0.0018	0.0018	B221917
Chloride (Cl)	mg/L	<1.0	N/A	14	1.0	B219884
Sulphate (SO4)	mg/L	2.9	N/A	40	1.0	B219884
Nutrients					•	
Total Ammonia (N)	mg/L	<0.015	N/A	<0.015	0.015	B220627
Orthophosphate (P)	mg/L	<0.0030	N/A	0.0069	0.0030	B218450
Nitrate plus Nitrite (N)	mg/L	0.044	N/A	0.804	0.020	B219125
RDL = Reportable Detection Lir	nit					
Lab-Dup = Laboratory Initiated	Duplica	te				
$N/\Delta = Not Applicable$						

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFQ137		CFQ138	CFQ138		
Sampling Date		2023/11/27		2023/11/27	2023/11/27		
Sampling Date		16:00		16:10	16:10		
COC Number		705547-01-01		705547-01-01	705547-01-01		
		WG-11222680-271123		WG-11222680-271123	WG-11222680-271123		
	UNITS	-KH-03	QC Batch	-KH-04	-KH-04	RDL	QC Batch
					Lab-Dup		
ANIONS							
Nitrite (N)	mg/L	<0.0050	B219129	<0.0050	<0.0050	0.0050	B219129
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	143	B218178	144	N/A	0.50	B218178
Nitrate (N)	mg/L	3.51	B218461	3.49	N/A	0.10	B218461
Sulphide (as H2S)	mg/L	<0.0020	B217989	<0.0020	N/A	0.0020	B217989
Low Molecular Weight PAH`s	ug/L	<0.10	B218123	<0.10	N/A	0.10	B218123
High Molecular Weight PAH`s	ug/L	<0.050	B218123	<0.050	N/A	0.050	B218123
Total PAH	ug/L	<0.10	B218123	<0.10	N/A	0.10	B218123
Field Parameters	•		•			•	
Field pH	рН	7.25	ONSITE	7.25	N/A	N/A	ONSITE
Field Temperature	°C	9.48	ONSITE	9.48	N/A	N/A	ONSITE
Misc. Inorganics	•		•			•	
Conductivity	uS/cm	340	B219142	340	N/A	2.0	B219142
Total Dissolved Solids	mg/L	220	B218644	240	N/A	10	B218644
Anions	•		•			•	
Alkalinity (PP as CaCO3)	mg/L	<1.0	B219127	<1.0	N/A	1.0	B219127
Alkalinity (Total as CaCO3)	mg/L	90	B219127	89	N/A	1.0	B219127
Bicarbonate (HCO3)	mg/L	110	B219127	110	N/A	1.0	B219127
Carbonate (CO3)	mg/L	<1.0	B219127	<1.0	N/A	1.0	B219127
Hydroxide (OH)	mg/L	<1.0	B219127	<1.0	N/A	1.0	B219127
Total Sulphide	mg/L	<0.0018	B221917	<0.0018	N/A	0.0018	B221917
Chloride (Cl)	mg/L	8.2	B219884	8.3	N/A	1.0	B219887
Sulphate (SO4)	mg/L	48	B219884	47	N/A	1.0	B219887
Nutrients					•		
Total Ammonia (N)	mg/L	<0.015	B220627	<0.015	N/A	0.015	B220627
Orthophosphate (P)	mg/L	0.0032	B218450	0.0031	N/A	0.0030	B218450
Nitrate plus Nitrite (N)	mg/L	3.51	B219125	3.49	3.46	0.10	B219125
RDL = Reportable Detection Lir							
Lab-Dup = Laboratory Initiated	Duplica	te					
A1/A A1 + A 1º 1.1							

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFQ139		
Sampling Date		2023/11/27		
		16:50		
COC Number		705547-01-01		
	UNITS	WG-11222680-271123 -KH-05	RDL	QC Batch
ANIONS				
Nitrite (N)	mg/L	<0.0050	0.0050	B219129
Calculated Parameters				
Dissolved Hardness (CaCO3)	mg/L	41.7	0.50	B218178
Nitrate (N)	mg/L	0.416	0.020	B218461
Sulphide (as H2S)	mg/L	<0.0020	0.0020	B217989
Low Molecular Weight PAH`s	ug/L	<0.10	0.10	B218123
High Molecular Weight PAH`s	ug/L	<0.050	0.050	B218123
Total PAH	ug/L	<0.10	0.10	B218123
Field Parameters				
Field pH	рН	7.54	N/A	ONSITE
Field Temperature	°C	13.12	N/A	ONSITE
Misc. Inorganics				
Conductivity	uS/cm	100	2.0	B219142
Total Dissolved Solids	mg/L	78	10	B218644
Anions				
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	B219127
Alkalinity (Total as CaCO3)	mg/L	41	1.0	B219127
Bicarbonate (HCO3)	mg/L	50	1.0	B219127
Carbonate (CO3)	mg/L	<1.0	1.0	B219127
Hydroxide (OH)	mg/L	<1.0	1.0	B219127
Total Sulphide	mg/L	<0.0018	0.0018	B221917
Chloride (Cl)	mg/L	3.3	1.0	B219887
Sulphate (SO4)	mg/L	2.9	1.0	B219887
Nutrients	•			
Total Ammonia (N)	mg/L	<0.015	0.015	B220627
	mg/L	0.0042	0.0030	B218450
Orthophosphate (P)	Ο,			

eau Veritas Job #: C397191 GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		CFQ135	CFQ136	CFQ137	CFQ138		
Compline Date		2023/11/27	2023/11/27	2023/11/27	2023/11/27		
Sampling Date		13:10	14:15	16:00	16:10		
COC Number		705547-01-01	705547-01-01	705547-01-01	705547-01-01		
	UNITS	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	RDL	QC Batch
	UNITS	-KH-01	-KH-02	-KH-03	-KH-04	NDL	QC Batti
Polycyclic Aromatics							
Quinoline	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B220005
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B220005
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
2-Methylnaphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B220005
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B220005
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B220005
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B220005
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B220005
Chrysene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B220005
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	B220005
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	B220005
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	B220005
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B220005
Surrogate Recovery (%)	•					•	
D10-ANTHRACENE (sur.)	%	99	95	94	92	N/A	B220005
D8-ACENAPHTHYLENE (sur.)	%	95	92	89	87	N/A	B220005
D8-NAPHTHALENE (sur.)	%	97	94	93	90	N/A	B220005
TERPHENYL-D14 (sur.)	%	93	90	92	89	N/A	B220005
RDL = Reportable Detection L	imit						

RDL = Reportable Detection Limit

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		CFQ139		
Sampling Date		2023/11/27		
Sampling Date		16:50		
COC Number		705547-01-01		
	UNITS	WG-11222680-271123	RDL	QC Batch
	Oillis	-KH-05	NDL	QC Dateil
Polycyclic Aromatics				
Quinoline	ug/L	<0.020	0.020	B220005
Naphthalene	ug/L	<0.10	0.10	B220005
1-Methylnaphthalene	ug/L	<0.050	0.050	B220005
2-Methylnaphthalene	ug/L	<0.10	0.10	B220005
Acenaphthylene	ug/L	<0.050	0.050	B220005
Acenaphthene	ug/L	<0.050	0.050	B220005
Fluorene	ug/L	<0.050	0.050	B220005
Phenanthrene	ug/L	<0.050	0.050	B220005
Anthracene	ug/L	<0.010	0.010	B220005
Acridine	ug/L	<0.050	0.050	B220005
Fluoranthene	ug/L	<0.020	0.020	B220005
Pyrene	ug/L	<0.020	0.020	B220005
Benzo(a)anthracene	ug/L	<0.010	0.010	B220005
Chrysene	ug/L	<0.020	0.020	B220005
Benzo(b&j)fluoranthene	ug/L	<0.030	0.030	B220005
Benzo(k)fluoranthene	ug/L	<0.050	0.050	B220005
Benzo(a)pyrene	ug/L	<0.0050	0.0050	B220005
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	B220005
Dibenz(a,h)anthracene	ug/L	<0.0030	0.0030	B220005
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	B220005
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	93	N/A	B220005
D8-ACENAPHTHYLENE (sur.)	%	86	N/A	B220005
D8-NAPHTHALENE (sur.)	%	89	N/A	B220005
TERPHENYL-D14 (sur.)	%	91	N/A	B220005
RDL = Reportable Detection L	imit			
N/A = Not Applicable				

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

MERCURY BY COLD VAPOR (WATER)

Bureau Veritas ID		CFQ135	CFQ136	CFQ137	CFQ138		
Sampling Date		2023/11/27	2023/11/27	2023/11/27	2023/11/27		
. 0		13:10	14:15	16:00	16:10		
COC Number		705547-01-01	705547-01-01	705547-01-01	705547-01-01		
		WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123		
	LINITC					DDI	OC Batch
	UNITS	-KH-01	-KH-02	-KH-03	-KH-04	RDL	QC Batch
Elements	UNITS					RDL	QC Batch
Elements Dissolved Mercury (Hg)	ug/L					RDL	QC Batch B223426

Bureau Veritas ID		CFQ139		
Sampling Date		2023/11/27 16:50		
COC Number		705547-01-01		
		WG-11222680-271123		
	UNITS	-KH-05	RDL	QC Batch
Elements	UNITS		RDL	QC Batch
Elements Dissolved Mercury (Hg)	ug/L		RDL 0.0019	QC Batch B223426

Report Date: 2023/12/05

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

Bureau Veritas ID		CFQ135	CFQ136	CFQ137	CFQ138		
Sampling Date		2023/11/27	2023/11/27	2023/11/27	2023/11/27		
oumpung Dute		13:10	14:15	16:00	16:10		
COC Number		705547-01-01	705547-01-01	705547-01-01	705547-01-01		
	UNITS			WG-11222680-271123		RDL	QC Batch
		-KH-01	-KH-02	-KH-03	-KH-04		
Dissolved Metals by ICPMS							
Dissolved Aluminum (AI)	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	B221019
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	B221019
Dissolved Arsenic (As)	ug/L	<0.10	0.34	<0.10	<0.10	0.10	B221019
Dissolved Barium (Ba)	ug/L	1.3	6.8	4.4	4.4	1.0	B221019
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B221019
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B221019
Dissolved Boron (B)	ug/L	<50	742	171	167	50	B221019
Dissolved Cadmium (Cd)	ug/L	<0.010	0.012	<0.010	0.010	0.010	B221019
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B221019
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B221019
Dissolved Copper (Cu)	ug/L	<0.20	1.92	0.68	0.66	0.20	B221019
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B221019
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	B221019
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	B221019
Dissolved Manganese (Mn)	ug/L	<1.0	<1.0	1.8	1.9	1.0	B221019
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B221019
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	B221019
Dissolved Phosphorus (P)	ug/L	<10	13	<10	<10	10	B221019
Dissolved Selenium (Se)	ug/L	<0.10	0.14	0.23	0.22	0.10	B221019
Dissolved Silicon (Si)	ug/L	4550	7400	8240	8280	100	B221019
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B221019
Dissolved Strontium (Sr)	ug/L	15.5	74.8	76.2	76.1	1.0	B221019
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B221019
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B221019
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B221019
Dissolved Uranium (U)	ug/L	<0.10	0.17	<0.10	<0.10	0.10	B221019
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B221019
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	B221019
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B221019
Dissolved Calcium (Ca)	mg/L	10.7	49.8	43.2	43.7	0.050	B218179
Dissolved Magnesium (Mg)	mg/L	1.30	7.59	8.54	8.52	0.050	B218179
RDL = Reportable Detection Li	mit						

Bureau Veritas Job #: C397191 GHD Limited
Report Date: 2023/12/05 Client Project

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

Bureau Veritas ID		CFQ135	CFQ136	CFQ137	CFQ138		
Sampling Date		2023/11/27	2023/11/27	2023/11/27	2023/11/27		
		13:10	14:15	16:00	16:10		
COC Number		705547-01-01	705547-01-01	705547-01-01	705547-01-01		
	UNITS	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	RDL	QC Batch
	UNITS	-KH-01	-KH-02	-KH-03	-KH-04	KDL	QC Battii
Dissolved Potassium (K)	mg/L	0.208	0.529	0.404	0.402	0.050	B218179
Dissolved Sodium (Na)	mg/L	1.10	10.2	8.67	8.67	0.050	B218179
Dissolved Sulphur (S)	mg/L	<3.0	13.4	16.4	16.4	3.0	B218179
RDL = Reportable Detection Li	••						

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

Bureau Veritas ID		CFQ139		
Sampling Date		2023/11/27		
COC Number		16:50 705547-01-01		
COC Number		WG-11222680-271123		
	UNITS	-KH-05	RDL	QC Batc
Dissolved Metals by ICPMS	-		ı	
Dissolved Aluminum (Al)	ug/L	<3.0	3.0	B221019
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	B221019
Dissolved Arsenic (As)	ug/L	0.13	0.10	B221019
Dissolved Barium (Ba)	ug/L	1.2	1.0	B221019
Dissolved Beryllium (Be)	ug/L	<0.10	0.10	B221019
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	B221019
Dissolved Boron (B)	ug/L	<50	50	B221019
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	B221019
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	B221019
Dissolved Cobalt (Co)	ug/L	<0.20	0.20	B22101
Dissolved Copper (Cu)	ug/L	1.30	0.20	B22101
Dissolved Iron (Fe)	ug/L	<5.0	5.0	B22101
Dissolved Lead (Pb)	ug/L	<0.20	0.20	B22101
Dissolved Lithium (Li)	ug/L	<2.0	2.0	B22101
Dissolved Manganese (Mn)	ug/L	<1.0	1.0	B22101
Dissolved Molybdenum (Mo)	ug/L	<1.0	1.0	B22101
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	B22101
Dissolved Phosphorus (P)	ug/L	<10	10	B22101
Dissolved Selenium (Se)	ug/L	0.12	0.10	B221019
Dissolved Silicon (Si)	ug/L	4990	100	B221019
Dissolved Silver (Ag)	ug/L	<0.020	0.020	B221019
Dissolved Strontium (Sr)	ug/L	21.0	1.0	B22101
Dissolved Thallium (TI)	ug/L	<0.010	0.010	B221019
Dissolved Tin (Sn)	ug/L	<5.0	5.0	B221019
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	B22101
Dissolved Uranium (U)	ug/L	<0.10	0.10	B22101
Dissolved Vanadium (V)	ug/L	<5.0	5.0	B221019
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	B221019
Dissolved Zirconium (Zr)	ug/L	<0.10	0.10	B221019
Dissolved Calcium (Ca)	mg/L	13.8	0.050	B21817
Dissolved Magnesium (Mg)	mg/L	1.74	0.050	B21817
RDL = Reportable Detection Li	mit			

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

Bureau Veritas ID		CFQ139		
Sampling Date		2023/11/27		
Jamping Date		16:50		
COC Number		705547-01-01		
	UNITS	WG-11222680-271123	RDL	QC Batch
	ONITS	-KH-05	KDL	QC Battii
Dissolved Potassium (K)	mg/L	0.176	0.050	B218179
Dissolved Sodium (Na)	mg/L	1.86	0.050	B218179
Dissolved Sulphur (S)	mg/L	<3.0	3.0	B218179
RDL = Reportable Detection Li	mit			

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

TOTAL PETROLEUM HYDROCARBONS (WATER)

		1					
Bureau Veritas ID		CFQ135	CFQ136	CFQ137	CFQ138		
Compling Data		2023/11/27	2023/11/27	2023/11/27	2023/11/27		
Sampling Date		13:10	14:15	16:00	16:10		
COC Number		705547-01-01	705547-01-01	705547-01-01	705547-01-01		
	UNITS	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	RDL	OC Botch
	UNITS	-KH-01	-KH-02	-KH-03	-KH-04	KUL	QC Batch
Calculated Parameters							
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B218097
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B218097
Ext. Pet. Hydrocarbon	•					•	
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B220011
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B220011
Surrogate Recovery (%)	•					•	,
O-TERPHENYL (sur.)	%	100	99	101	100	N/A	B220011
RDL = Reportable Detection	Limit						
N/A = Not Applicable							

Bureau Veritas ID		CFQ139		
Compling Date		2023/11/27		
Sampling Date		16:50		
COC Number		705547-01-01		
	UNITS	WG-11222680-271123 -KH-05	RDL	QC Batch
		-КП-U5		
Calculated Parameters				
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.20	B218097
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.20	B218097
Ext. Pet. Hydrocarbon				
EPH (C10-C19)	mg/L	<0.20	0.20	B220011
EPH (C19-C32)	mg/L	<0.20	0.20	B220011
Surrogate Recovery (%)	•		•	
O-TERPHENYL (sur.)	%	101	N/A	B220011
RDL = Reportable Detection	Limit			
N/A = Not Applicable				

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

MISCELLANEOUS (WATER)

Bureau Veritas ID		CFQ135	CFQ136	CFQ137		
Sampling Date		2023/11/27 13:10	2023/11/27 14:15	2023/11/27 16:00		
COC Number		705547-01-01	705547-01-01	705547-01-01		
	UNITS	WG-11222680-271123	WG-11222680-271123	WG-11222680-271123	BDI	OC Batch
	UNITS	-KH-01	-KH-02	-KH-03	RDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B218692
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B218692
RDL = Reportable Detection Limit	•	•				

Bureau Veritas ID		CFQ138	CFQ139		
Sampling Date		2023/11/27 16:10	2023/11/27 16:50		
COC Number		705547-01-01	705547-01-01		
	UNITS	WG-11222680-271123 -KH-04	WG-11222680-271123 -KH-05	RDL	QC Batch
Calculated Parameters					
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	0.0050	B218692
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	0.0050	B218692

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B220005	D10-ANTHRACENE (sur.)	2023/12/01			101	50 - 140	95	%		
B220005	D8-ACENAPHTHYLENE (sur.)	2023/12/01			99	50 - 140	93	%		
B220005	D8-NAPHTHALENE (sur.)	2023/12/01			99	50 - 140	94	%		
B220005	TERPHENYL-D14 (sur.)	2023/12/01			97	50 - 140	95	%		
B220011	O-TERPHENYL (sur.)	2023/12/01			100	60 - 140	99	%		
B218450	Orthophosphate (P)	2023/11/30			94	80 - 120	<0.0030	mg/L		
B218644	Total Dissolved Solids	2023/12/01	101	80 - 120	103	80 - 120	<10	mg/L	6.5 (1)	20
B219125	Nitrate plus Nitrite (N)	2023/11/30	NC (2)	80 - 120	110	80 - 120	<0.020	mg/L	0.91 (3)	25
B219127	Alkalinity (PP as CaCO3)	2023/11/30					<1.0	mg/L	NC (1)	20
B219127	Alkalinity (Total as CaCO3)	2023/11/30			92	80 - 120	<1.0	mg/L	0.41 (1)	20
B219127	Bicarbonate (HCO3)	2023/11/30					<1.0	mg/L	0.41 (1)	20
B219127	Carbonate (CO3)	2023/11/30					<1.0	mg/L	NC (1)	20
B219127	Hydroxide (OH)	2023/11/30					<1.0	mg/L	NC (1)	20
B219129	Nitrite (N)	2023/11/30	105 (2)	80 - 120	105	80 - 120	<0.0050	mg/L	NC (3)	20
B219142	Conductivity	2023/11/30			99	90 - 110	<2.0	uS/cm	0 (1)	10
B219884	Chloride (CI)	2023/12/01	NC	80 - 120	96	80 - 120	<1.0	mg/L	0.15 (1)	20
B219884	Sulphate (SO4)	2023/12/01	NC	80 - 120	96	80 - 120	<1.0	mg/L	0.78 (1)	20
B219887	Chloride (CI)	2023/12/01	97	80 - 120	96	80 - 120	<1.0	mg/L	NC (1)	20
B219887	Sulphate (SO4)	2023/12/01	NC	80 - 120	96	80 - 120	<1.0	mg/L	0.71 (1)	20
B220005	1-Methylnaphthalene	2023/12/02			103	50 - 140	<0.050	ug/L	NC (1)	40
B220005	2-Methylnaphthalene	2023/12/02			100	50 - 140	<0.10	ug/L	NC (1)	40
B220005	Acenaphthene	2023/12/02			102	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Acenaphthylene	2023/12/02			103	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Acridine	2023/12/02			99	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Anthracene	2023/12/02			106	50 - 140	<0.010	ug/L	NC (1)	40
B220005	Benzo(a)anthracene	2023/12/02			85	50 - 140	< 0.010	ug/L	NC (1)	40
B220005	Benzo(a)pyrene	2023/12/02			89	50 - 140	< 0.0050	ug/L	NC (1)	40
B220005	Benzo(b&j)fluoranthene	2023/12/02			102	50 - 140	<0.030	ug/L	NC (1)	40
B220005	Benzo(g,h,i)perylene	2023/12/02			86	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Benzo(k)fluoranthene	2023/12/02			98	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Chrysene	2023/12/02			89	50 - 140	<0.020	ug/L	NC (1)	40

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B220005	Dibenz(a,h)anthracene	2023/12/02			89	50 - 140	<0.0030	ug/L	NC (1)	40
B220005	Fluoranthene	2023/12/02			79	50 - 140	<0.020	ug/L	NC (1)	40
B220005	Fluorene	2023/12/02			99	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Indeno(1,2,3-cd)pyrene	2023/12/02			90	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Naphthalene	2023/12/02			101	50 - 140	<0.10	ug/L	NC (1)	40
B220005	Phenanthrene	2023/12/02			102	50 - 140	<0.050	ug/L	NC (1)	40
B220005	Pyrene	2023/12/02			82	50 - 140	<0.020	ug/L	NC (1)	40
B220005	Quinoline	2023/12/02			106	50 - 140	<0.020	ug/L	NC (1)	40
B220011	EPH (C10-C19)	2023/12/01			90	70 - 130	<0.20	mg/L	NC (1)	30
B220011	EPH (C19-C32)	2023/12/01			94	70 - 130	<0.20	mg/L	NC (1)	30
B220627	Total Ammonia (N)	2023/12/01	-6.6 (4)	80 - 120	101	80 - 120	< 0.015	mg/L	5.4 (1)	20
B221019	Dissolved Aluminum (Al)	2023/12/04	103	80 - 120	102	80 - 120	<3.0	ug/L	20 (1)	20
B221019	Dissolved Antimony (Sb)	2023/12/04	105	80 - 120	102	80 - 120	<0.50	ug/L	NC (1)	20
B221019	Dissolved Arsenic (As)	2023/12/04	108	80 - 120	103	80 - 120	< 0.10	ug/L	0.80 (1)	20
B221019	Dissolved Barium (Ba)	2023/12/04	NC	80 - 120	102	80 - 120	<1.0	ug/L	1.1 (1)	20
B221019	Dissolved Beryllium (Be)	2023/12/04	106	80 - 120	101	80 - 120	<0.10	ug/L	NC (1)	20
B221019	Dissolved Bismuth (Bi)	2023/12/04	99	80 - 120	99	80 - 120	<1.0	ug/L	NC (1)	20
B221019	Dissolved Boron (B)	2023/12/04	113	80 - 120	110	80 - 120	<50	ug/L	NC (1)	20
B221019	Dissolved Cadmium (Cd)	2023/12/04	101	80 - 120	99	80 - 120	< 0.010	ug/L	2.2 (1)	20
B221019	Dissolved Chromium (Cr)	2023/12/04	96	80 - 120	96	80 - 120	<1.0	ug/L	NC (1)	20
B221019	Dissolved Cobalt (Co)	2023/12/04	93	80 - 120	95	80 - 120	<0.20	ug/L	NC (1)	20
B221019	Dissolved Copper (Cu)	2023/12/04	92	80 - 120	95	80 - 120	<0.20	ug/L	3.8 (1)	20
B221019	Dissolved Iron (Fe)	2023/12/04	103	80 - 120	101	80 - 120	<5.0	ug/L	NC (1)	20
B221019	Dissolved Lead (Pb)	2023/12/04	101	80 - 120	100	80 - 120	<0.20	ug/L	NC (1)	20
B221019	Dissolved Lithium (Li)	2023/12/04	101	80 - 120	101	80 - 120	<2.0	ug/L	NC (1)	20
B221019	Dissolved Manganese (Mn)	2023/12/04	99	80 - 120	100	80 - 120	<1.0	ug/L	1.4 (1)	20
B221019	Dissolved Molybdenum (Mo)	2023/12/04	106	80 - 120	102	80 - 120	<1.0	ug/L	NC (1)	20
B221019	Dissolved Nickel (Ni)	2023/12/04	97	80 - 120	99	80 - 120	<1.0	ug/L	0.59 (1)	20
B221019	Dissolved Phosphorus (P)	2023/12/04	107	80 - 120	101	80 - 120	<10	ug/L		
B221019	Dissolved Selenium (Se)	2023/12/04	105	80 - 120	100	80 - 120	<0.10	ug/L	3.1 (1)	20
B221019	Dissolved Silicon (Si)	2023/12/04	NC	80 - 120	114	80 - 120	<100	ug/L	1.0 (1)	20

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	0
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B221019	Dissolved Silver (Ag)	2023/12/04	103	80 - 120	101	80 - 120	<0.020	ug/L	NC (1)	20
B221019	Dissolved Strontium (Sr)	2023/12/04	NC	80 - 120	102	80 - 120	<1.0	ug/L	0.018 (1)	20
B221019	Dissolved Thallium (TI)	2023/12/04	102	80 - 120	101	80 - 120	<0.010	ug/L	6.8 (1)	20
B221019	Dissolved Tin (Sn)	2023/12/04	103	80 - 120	101	80 - 120	<5.0	ug/L	NC (1)	20
B221019	Dissolved Titanium (Ti)	2023/12/04	104	80 - 120	103	80 - 120	<5.0	ug/L	NC (1)	20
B221019	Dissolved Uranium (U)	2023/12/04	105	80 - 120	101	80 - 120	<0.10	ug/L	0.89 (1)	20
B221019	Dissolved Vanadium (V)	2023/12/04	102	80 - 120	100	80 - 120	<5.0	ug/L	NC (1)	20
B221019	Dissolved Zinc (Zn)	2023/12/04	96	80 - 120	99	80 - 120	<5.0	ug/L	NC (1)	20
B221019	Dissolved Zirconium (Zr)	2023/12/04	106	80 - 120	101	80 - 120	<0.10	ug/L	NC (1)	20
B221917	Total Sulphide	2023/12/04	108 (5)	80 - 120	101	80 - 120	<0.0018	mg/L	NC (6)	20
B223426	Dissolved Mercury (Hg)	2023/12/05	99	80 - 120	111	80 - 120	<0.0019	ug/L	NC (1)	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [CFQ138-01]
- (3) Duplicate Parent ID [CFQ138-01]
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (5) Matrix Spike Parent ID [CFQ136-03]
- (6) Duplicate Parent ID [CFQ135-03]

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-5 Sampler Initials: KH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

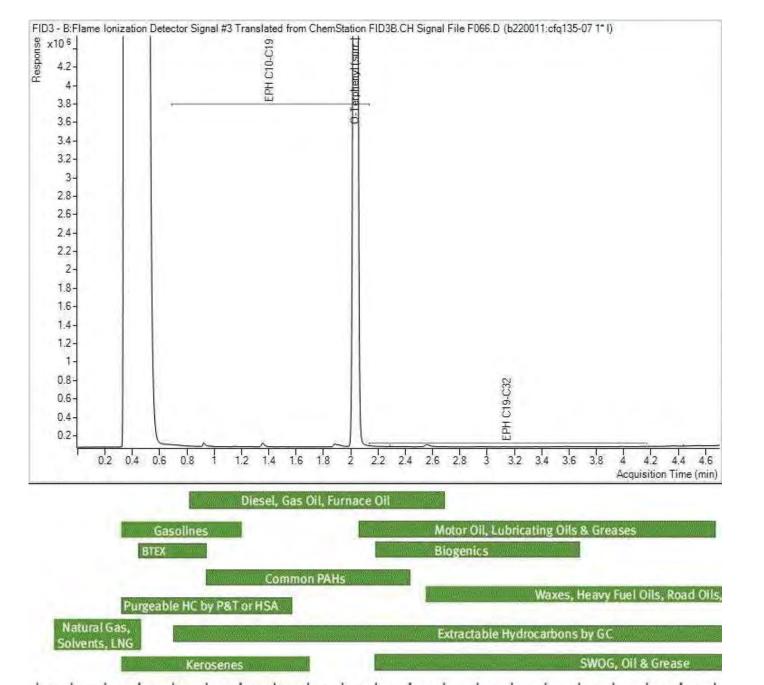
Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Food laboratory operations.

		Stureau Vertias 4606 Canada Way, Burnathy, British Col	umbia Cana	da VSG 18S	Tar (604) 734 7276	To6-Heat 80	1-563-6	260 Fax:00	34); /31 23	DE www.bur	w. 000+							III BAZIA ANN	VASCINA INCRES III III	Page 1 of 1
		INVOICE TO:				Report l	nforma	tion						Project	informatio	n		数色解之数	384344 3583	ılly
ompany Name	#163 GHD L			Company Na								Quotation #		C30090)			110		Bottle Order #:
ordact Name	AP Invoices	A CONTRACTOR OF THE PARTY OF TH		Contact Nam	 Stephanie I 	Berton						PO.#		735-002			- 0	397191 CO	C	10000000
ddress	455 PHILLIP WATERLOO		_	Address		_	_		_			Project#			80-15.1	. 10-11				705547
tone	(519) 884-05		4	Phone	_		_					Project Nam		Ground		ndfill		- 1100		Project Manager
mail		55@ghd.com;nv01CM0] "panauli		Email	NationalED	DSuppor	t@m	axxam.ca	stepha	nie.berto	n@gl	L. COM				asler			C#706547-01-01	Brody Anderson
Regulatory Cri			-	Specie	Instructions	normal delication of the last	T				-	QUESTED	PLEASE I			DE TIES		T	Turnaround Time (TAT) Re	quired
CSR COME BC Was	er Quality				field fill end as ind		Fitnesd 7 (Y/N)	y, Ct, SO4, NO2, NO3,	Alkalinity	Sulphide + H2S Caio	Sulphide, Un-lonized (as H2S) (Calc)	4 (Total)	Metals with CV Hg.	Dissolved Solids (Filt. Residue)	H with subtracted PAHs		Temperature	Standard TAT = 5 Please note: Stant days - contact you	tush TAT is not apecified) 7 Working days for most tests stard TAT for centain tests such as BC Phoject Manager for distals sh TAT (of applies to entire submiss	ID and Dissing/Furiess are state)
	IS MUST BE KEPT	500L (< 10°C) FROM TIME OF SAMPLING Barryles (Location) Manufication W (n=11272640 - 27 Ht3 - KH-	Date 5	Samphed	Time Sampled	Matrix	C Metals Flei	Conductivity. (N+N. PO4	Speciated	Sulphide	Sulphide,	Ammonia-N	Dissolved /	, Total Diss	ГЕРИМЕРН	Flett pH	Field Tem	Rush Confirmatio		of ion for #1
		W4-11222680-271123-KH-	-	1/25	13:10	W	7	V /	4	-/	1	1	1	1	1	1	_/	7		
		WG-11222680-271123-KH-0	+		21.5		V	/	7	/	-	1	1	1	1	1	/	7		
		WG-1122680-271123-KH-	-		16:10		y	1	1	1	V	1	1	1	/	1	1	1		
_			1		16.10	-	7.	~	×,	V	Ψ,	ν,	V	V	V	V	V.,	1		
		WG-11222680-271123-KH-	05	/	16:50	~	У	1	/	1	/	1	/	/	V	/	/	7		
· HELING	DUSHED BY: (Signa	vertice) Debra Tong 23/1	1/28	07:0	р	RECE	VED B	C. (Signatur C. E	(Print)		1	2311	29	09:	# jara	used and ubmitted	Time See	Temperature	Col on security	Seal Stact on Cooler? Yes No.

Bureau Veritas Canada (2019) Inc.

Bureau Veritas Job #: C397191 Report Date: 2023/12/05 Bureau Veritas Sample: CFQ135


GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-271123-KH-01

EPH in Water when PAH required Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

14

16

18

10.

8

12

22

Number of Carbon Atoms

32

34

36

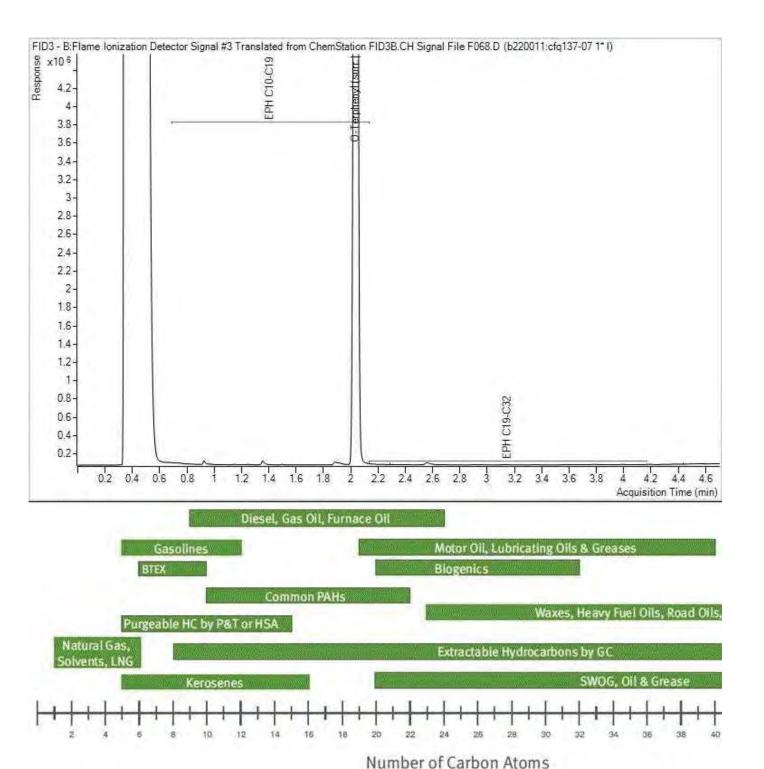

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-271123-KH-02

EPH in Water when PAH required Chromatogram

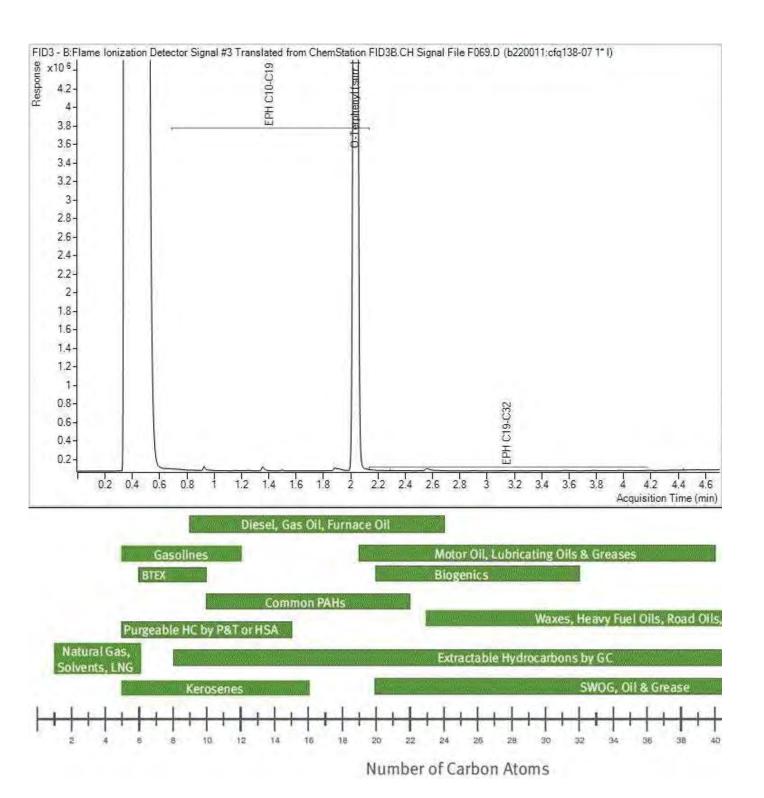

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-271123-KH-03

EPH in Water when PAH required Chromatogram

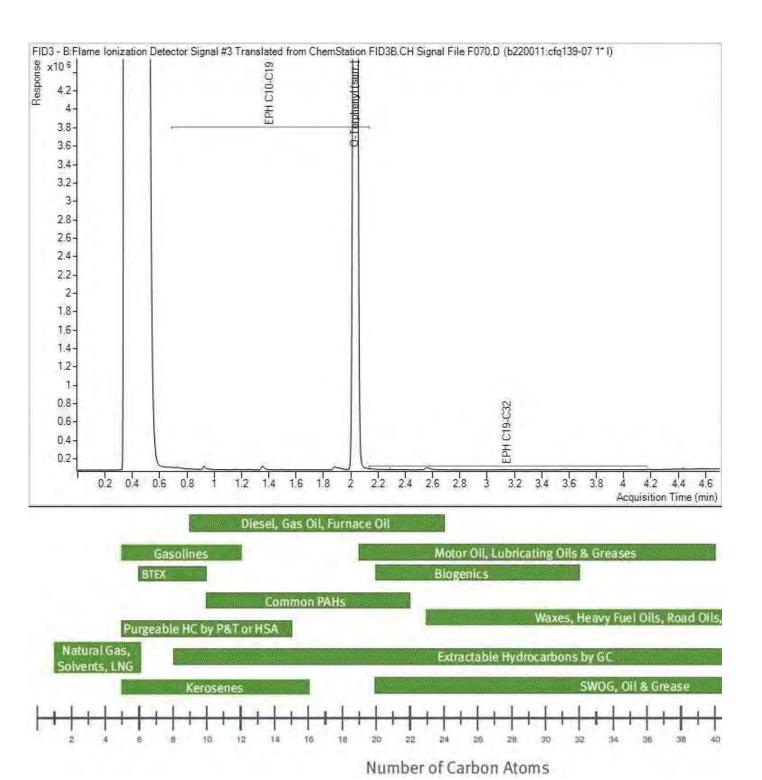

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-271123-KH-04

EPH in Water when PAH required Chromatogram


GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-271123-KH-05

EPH in Water when PAH required Chromatogram

Your P.O. #: 735-002640-4 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL-UPLAND LANDFILL Your C.O.C. #: 705547-03-01, 705547-01-01

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2

Report Date: 2023/12/07

Report #: R3437781 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C397797 Received: 2023/11/30, 11:42

Sample Matrix: Water # Samples Received: 9

•		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	8	N/A	2023/12/01	BBY6SOP-00026	SM 24 2320 B m
Biochemical Oxygen Demand	1	2023/12/01	2023/12/06	BBY6SOP-00045	SM 23 5210 B m
BTEX/MTBE LH, VH, F1 SIM/MS	1	N/A	2023/12/01	BBY8SOP-00010 / BBY8SOP-00011 / BBY8SOP-00012	BCMOE BCLM Jul 2017
Chloride/Sulphate by Auto Colourimetry	8	N/A	2023/12/01	BBY6SOP-00011 / BBY6SOP-00017	SM24-4500-CI/SO4-E m
COD by Colorimeter	1	N/A	2023/12/04	BBY6SOP-00024	SM 24 5220 D m
Phenols in Water by GCMS	1	2023/12/06	2023/12/06	BBY8SOP-00025 / BBY8SOP-00054	BCMOE BCLM Jul2017 m
Conductivity @25C	8	N/A	2023/12/01	BBY6SOP-00026	SM 24 2510 B m
Fluoride	8	N/A	2023/12/02	BBY6SOP-00048	SM 24 4500-F C m
Sulphide (as H2S) (1)	8	N/A	2023/12/04		Auto Calc
Un-ionized Hydrogen Sulphide as S Calc	8	N/A	2023/12/04	BBY WI-00033	Auto Calc
Hardness Total (calculated as CaCO3) (2)	3	N/A	2023/12/04	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	3	N/A	2023/12/04	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	5	N/A	2023/12/06	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CV (3)	5	2023/12/05	2023/12/05	AB SOP-00084	BCMOE BCLM Oct2013 m
Mercury (Total) by CV	3	2023/12/05	2023/12/05	AB SOP-00084	BCMOE BCLM Oct2013 m
ICP-OES Dissolved Metals in Water (3)	3	N/A	2023/12/04	BBY7SOP-00018	EPA 6010d m
EPH in Water when PAH required	6	2023/12/04	2023/12/04	BBY8SOP-00029	BCMOE BCLM Sep2017 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	5	N/A	2023/12/06	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (3)	5	N/A	2023/12/05	BBY7SOP-00002	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	3	2023/12/01	2023/12/04	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	3	2023/12/04	2023/12/04	BBY7SOP-00003 / BBY7SOP-00002	EPA 6020b R2 m
Non-Chlorinated Phenols in Water by GCMS	1	2023/12/06	2023/12/06	BBY8SOP-00054	BCMOE BCLM Jul 2017
Ammonia-N (Total)	8	N/A	2023/12/05	AB SOP-00007	SM 24 4500 NH3 A G m
Nitrate + Nitrite (N)	8	N/A	2023/12/01	BBY6SOP-00010	SM 24 4500-NO3- H m
Nitrite (N) Regular Level Water	8	N/A	2023/12/01	BBY6SOP-00010	SM 24 4500-NO2- m
Nitrogen - Nitrate (as N)	8	N/A	2023/12/01	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	6	2023/12/04	2023/12/05	BBY8SOP-00021	BCMOE BCLM Jul2017m

Your P.O. #: 735-002640-4 Your Project #: 11222680-15.1 Site#: GROUNDWATER

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your C.O.C. #: 705547-03-01, 705547-01-01

Attention: Stephanie Berton

GHD Limited
455 PHILLIP STREET
WATERLOO, ON
CANADA N2L 3X2

Report Date: 2023/12/07

Report #: R3437781 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C397797 Received: 2023/11/30, 11:42

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
pH @25°C (4)	8	N/A	2023/12/01	BBY6SOP-00026	SM 24 4500-H+ B m
Phenols (Totals) in Water - Calc. (5)	1	N/A	2023/12/07	BBY WI-00033	Auto Calc
Orthophosphate by Automated Analyzer (6)	8	N/A	2023/12/01	BBY6SOP-00013	SM 24 4500-P E m
Total Sulphide (1)	8	N/A	2023/12/05	AB SOP-00080	SM 23 4500 S2-A D Fm
Total Dissolved Solids (Filt. Residue)	8	2023/12/01	2023/12/02	BBY6SOP-00033	SM 24 2540 C m
EPH less PAH in Water by GC/FID (7)	6	N/A	2023/12/05	BBY WI-00033	Auto Calc
Total Suspended Solids (NFR)	3	2023/12/01	2023/12/02	BBY6SOP-00034	SM 24 2540 D m
Field pH	8	N/A	2023/12/01		
Field Temperature	8	N/A	2023/12/01		
VOCs, VH, F1, LH in Water by HS GC/MS	1	N/A	2023/12/04	BBY8SOP-00009 / BBY8SOP-00011 / BBY8SOP-00012	BCMOE BCLM Jul2017 m
Volatile HC-BTEX (8)	1	N/A	2023/12/03	BBY WI-00033	Auto Calc
Volatile HC-BTEX (8)	1	N/A	2023/12/05	BBY WI-00033	Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Attention: Stephanie Berton

GHD Limited 455 PHILLIP STREET WATERLOO, ON CANADA N2L 3X2 Your P.O. #: 735-002640-4 Your Project #: 11222680-15.1

Site#: GROUNDWATER

Site Location: NEW LANDFILL-UPLAND LANDFILL Your C.O.C. #: 705547-03-01, 705547-01-01

Report Date: 2023/12/07

Report #: R3437781 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C397797

Received: 2023/11/30, 11:42

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (2) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (3) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (4) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas endeavours to analyze samples as soon as possible after receipt.
- (5) Total Phenols include (from BC Lab Manual): Nonchlorinated Phenols [Phenol, 2,4-Dimethylphenol, 2,6-Dimethylphenol, 3,4-Dimethylphenol, 2-Methylphenol (ortho-Cresol), 3-Methylphenol (meta-Cresol), 4-Methylphenol (para-Cresol), 2-Hydroxyphenol (Catechol), 3-Hydroxyphenol (Resorcinol), 4-Hydroxyphenol(Hydroquinone)]; Nitrophenols [2,4-Dinitrophenol, 2-Methyl-4,6-Dinitrophenol, 2-Nitrophenol, 4-Nitrophenol, 2-Nitrophenol, 2-Chlorophenol, 3-Chlorophenol, 4-Chlorophenol, 4-Chlorophenol, 4-Chlorophenol, 2-Nitrophenol, 2,3-Dichlorophenol, 2,4-Dichlorophenol, 2,5-Dichlorophenol, 2,6-Dichlorophenol, 3,4-Dichlorophenol, 3,5-Dichlorophenol, 2,3,4-Trichlorophenol, 2,3,5-Trichlorophenol, 2,3,6-Dichlorophenol, 2,6-Dichlorophenol, 2, Trichlorophenol, 2,4,5-Trichlorophenol, 2,3,4,6-Tetrachlorophenol, 2,3,4,6-Tetrachlorophenol, 2,3,4,6-Tetrachlorophenol, 2,3,5,6-Tetrachlorophenol, 2,3,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophenol, 2,4,6-Tetrachlorophe Pentachlorophenol].
- (6) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (7) LEPH = EPH (C10 to C19) (Acenaphthene + Acridine + Anthracene + Fluorene + Naphthalene + Phenanthrene)

HEPH = EPH (C19 to C32) - (Benzo(a)anthracene + Benzo(a)pyrene + Fluoranthene + Pyrene)

(8) VPH = VH - (Benzene + Toluene + Ethylbenzene + m & p-Xylene + o-Xylene + Styrene)

Encryption Key

Bureau Veritas

Please direct all questions regarding this Certificate of Analysis to: Brody Andersen, B.Sc., B.Sc., Program Specialist-Emergency Spill Response

Email: brody.andersen@bureauveritas.com

Phone# (780)742-1616

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Report Date: 2023/12/07

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFS920	CFS920		CFS921		
Sampling Date		2023/11/28 09:30	2023/11/28 09:30		2023/11/28 14:45		
COC Number		705547-03-01	705547-03-01		705547-03-01		
	UNITS	WG-11222680-281123 -KH-06	WG-11222680-281123 -KH-06 Lab-Dup	QC Batch	WG-11222680-281123 -KH-07	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	<0.0050	<0.0050	B220651	<0.0050	0.0050	B220651
Calculated Parameters		!	!		!		
Nitrate (N)	mg/L	0.719	N/A	B219834	0.237	0.020	B219834
Sulphide (as H2S)	mg/L	<0.0020	N/A	B219572	<0.0020	0.0020	B220226
Field Parameters	•						
Field pH	рН	7.37	N/A	ONSITE	7.73	N/A	ONSITE
Field Temperature	°C	10.72	N/A	ONSITE	10.55	N/A	ONSITE
Misc. Inorganics							
Conductivity	uS/cm	320	N/A	B220395	180	2.0	B220395
рН	рН	7.40	N/A	B220393	7.32	N/A	B220393
Total Dissolved Solids	mg/L	180	N/A	B220589	88	10	B220589
Anions	•		•	-	•	•	
Alkalinity (PP as CaCO3)	mg/L	<1.0	N/A	B220389	<1.0	1.0	B220389
Alkalinity (Total as CaCO3)	mg/L	140	N/A	B220389	72	1.0	B220389
Bicarbonate (HCO3)	mg/L	170	N/A	B220389	87	1.0	B220389
Carbonate (CO3)	mg/L	<1.0	N/A	B220389	<1.0	1.0	B220389
Dissolved Fluoride (F)	mg/L	<0.050	N/A	B220735	<0.050	0.050	B220735
Hydroxide (OH)	mg/L	<1.0	N/A	B220389	<1.0	1.0	B220389
Total Sulphide	mg/L	<0.0018	N/A	B221929	<0.0018	0.0018	B221929
Chloride (CI)	mg/L	4.7	N/A	B220245	4.1	1.0	B220590
Sulphate (SO4)	mg/L	7.7	N/A	B220245	7.1	1.0	B220590
Nutrients							
Total Ammonia (N)	mg/L	<0.015	N/A	B223595	<0.015	0.015	B223595
Orthophosphate (P)	mg/L	0.0081	N/A	B220019	<0.0030	0.0030	B220019
Nitrate plus Nitrite (N)	mg/L	0.719	0.719	B220649	0.237	0.020	B220649
RDL = Reportable Detection Lab-Dup = Laboratory Initiate		ate					

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFS921	CFS922	CFS923	CFS924		
Sampling Date		2023/11/28 14:45	2023/11/28 15:00	2023/11/28 16:30	2023/11/29 09:45		
COC Number		705547-03-01	705547-03-01	705547-03-01	705547-03-01		
	UNITS	WG-11222680-281123			WG-11222680-291123 -KH-10	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	N/A	<0.0050	<0.0050	<0.0050	0.0050	B220651
Calculated Parameters		'				!	
Nitrate (N)	mg/L	N/A	0.043	0.610	1.52	0.020	B219834
Sulphide (as H2S)	mg/L	N/A	<0.0020	<0.0020	<0.0020	0.0020	B220226
Field Parameters				1	1		
Field pH	рН	N/A	8.38	7.19	6.50	N/A	ONSITE
Field Temperature	°C	N/A	10.97	9.64	9.54	N/A	ONSITE
Misc. Inorganics						•	
Conductivity	uS/cm	N/A	84	490	130	2.0	B220395
рН	рН	N/A	7.25	7.12	6.91	N/A	B220393
Total Dissolved Solids	mg/L	88	44	280	80	10	B220589
Anions	•						
Alkalinity (PP as CaCO3)	mg/L	N/A	<1.0	<1.0	<1.0	1.0	B220389
Alkalinity (Total as CaCO3)	mg/L	N/A	36	78	43	1.0	B220389
Bicarbonate (HCO3)	mg/L	N/A	44	96	53	1.0	B220389
Carbonate (CO3)	mg/L	N/A	<1.0	<1.0	<1.0	1.0	B220389
Dissolved Fluoride (F)	mg/L	N/A	<0.050	<0.050	<0.050	0.050	B220735
Hydroxide (OH)	mg/L	N/A	<1.0	<1.0	<1.0	1.0	B220389
Total Sulphide	mg/L	N/A	<0.0018	<0.0018	<0.0018	0.0018	B221929
Chloride (CI)	mg/L	4.1	<1.0	85	2.6	1.0	B220590
Sulphate (SO4)	mg/L	6.9	2.6	5.3	6.7	1.0	B220590
Nutrients							
Total Ammonia (N)	mg/L	N/A	<0.015	<0.015	<0.015	0.015	B223595
Orthophosphate (P)	mg/L	N/A	0.022	0.0052	0.0039	0.0030	B220019
Nitrate plus Nitrite (N)	mg/L	N/A	0.043	0.610	1.52	0.020	B220649
RDL = Reportable Detection L	imit						

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFS925	CFS925			CFS932		
Sampling Date		2023/11/28 14:45	2023/11/28 14:45			2023/11/28 10:00		
COC Number		705547-03-01	705547-03-01			705547-01-01		
	UNITS	WL-11222680-281123- KH-01	WL-11222680-281123- KH-01 Lab-Dup	RDL	QC Batch	WS-11222680-281123- KH-01	RDL	QC Batch
ANIONS		•	•			•		
Nitrite (N)	mg/L	0.0414	N/A	0.0050	B220651	<0.0050	0.0050	B220651
Calculated Parameters		!	!			-		
Dissolved Hardness (CaCO3)	mg/L	1090	N/A	0.50	B220055	22.6	0.50	B220055
Nitrate (N)	mg/L	7.37	N/A	0.10	B219834	<0.020	0.020	B219834
Sulphide (as H2S)	mg/L	0.027	N/A	0.0020	B220226	<0.0020	0.0020	B220226
Demand Parameters		•						
Biochemical Oxygen Demand	mg/L	5.2 (1)	N/A	3.0	B220137	N/A	N/A	B220137
Chemical Oxygen Demand	mg/L	311	N/A	10	B222249	N/A	N/A	B222249
Field Parameters	•			•			-	
Field pH	рН	6.53	N/A	N/A	ONSITE	8.12	N/A	ONSITE
Field Temperature	°C	9.61	N/A	N/A	ONSITE	8.26	N/A	ONSITE
Misc. Inorganics	•	•	•	•	•	•	•	
Conductivity	uS/cm	3600	N/A	2.0	B220395	55	2.0	B220395
рН	рН	7.35	7.38	N/A	B220393	6.85	N/A	B220393
Total Dissolved Solids	mg/L	2400	N/A	10	B220589	34	10	B220589
Total Suspended Solids	mg/L	4.8	N/A	1.0	B220197	<1.1 (2)	1.1	B220197
Anions								
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	1.0	B220389	<1.0	1.0	B220389
Alkalinity (Total as CaCO3)	mg/L	690	700	1.0	B220389	22	1.0	B220389
Bicarbonate (HCO3)	mg/L	850	850	1.0	B220389	27	1.0	B220389
Carbonate (CO3)	mg/L	<1.0	<1.0	1.0	B220389	<1.0	1.0	B220389
Dissolved Fluoride (F)	mg/L	0.19	N/A	0.050	B220735	<0.050	0.050	B220735
Hydroxide (OH)	mg/L	<1.0	<1.0	1.0	B220389	<1.0	1.0	B220389
Total Sulphide	mg/L	0.025	N/A	0.0018	B221929	<0.0018	0.0018	B221929
Chloride (CI)	mg/L	290	N/A	5.0	B220590	<1.0	1.0	B220245
Sulphate (SO4)	mg/L	720	N/A	10	B220590	2.6	1.0	B220245

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limit raised based on sample volume used for analysis. Sample overdiluted based on physical properties of sample.

(2) RDL raised due to limited initial sample amount.

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFS925	CFS925			CFS932		
Sampling Date		2023/11/28 14:45	2023/11/28 14:45			2023/11/28 10:00		
COC Number		705547-03-01	705547-03-01			705547-01-01		
	UNITS	WL-11222680-281123- KH-01	WL-11222680-281123- KH-01 Lab-Dup	RDL	QC Batch	WS-11222680-281123- KH-01	RDL	QC Batch
Nutrients								
Total Ammonia (N)	mg/L	30	N/A	0.38	B223595	<0.015	0.015	B223595
Orthophosphate (P)	mg/L	0.013	N/A	0.0030	B220019	<0.0030	0.0030	B220019
Nitrate plus Nitrite (N)	mg/L	7.41	N/A	0.10	B220649	<0.020	0.020	B220649

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		CFS932	CFS933		
Sampling Date		2023/11/28	2023/11/28		
Sampling Date		10:00	10:30		
COC Number		705547-01-01	705547-01-01		
	UNITS	WS-11222680-281123- KH-01 Lab-Dup	WS-11222680-281123- KH-02	RDL	QC Batch
ANIONS					
Nitrite (N)	mg/L	N/A	<0.0050	0.0050	B220651
Calculated Parameters					L.
Dissolved Hardness (CaCO3)	mg/L	N/A	17.5	0.50	B220055
Nitrate (N)	mg/L	N/A	0.357	0.020	B219834
Sulphide (as H2S)	mg/L	N/A	<0.0020	0.0020	B220226
Field Parameters	-	 	 		
Field pH	рН	N/A	7.57	N/A	ONSITE
Field Temperature	°C	N/A	6.33	N/A	ONSITE
Misc. Inorganics	•				
Conductivity	uS/cm	N/A	65	2.0	B220395
рН	рН	N/A	6.47	N/A	B220393
Total Dissolved Solids	mg/L	N/A	38	10	B220589
Total Suspended Solids	mg/L	N/A	2.3 (1)	1.1	B220197
Anions					
Alkalinity (PP as CaCO3)	mg/L	N/A	<1.0	1.0	B220389
Alkalinity (Total as CaCO3)	mg/L	N/A	18	1.0	B220389
Bicarbonate (HCO3)	mg/L	N/A	22	1.0	B220389
Carbonate (CO3)	mg/L	N/A	<1.0	1.0	B220389
Dissolved Fluoride (F)	mg/L	<0.050	<0.050	0.050	B220735
Hydroxide (OH)	mg/L	N/A	<1.0	1.0	B220389
Total Sulphide	mg/L	N/A	<0.0018	0.0018	B221929
Chloride (CI)	mg/L	N/A	5.5	1.0	B220245
Sulphate (SO4)	mg/L	N/A	1.0	1.0	B220245
Nutrients					
Total Ammonia (N)	mg/L	N/A	0.063	0.015	B223595
Orthophosphate (P)	mg/L	N/A	<0.0030	0.0030	B220019
Nitrate plus Nitrite (N)	mg/L	N/A	0.357	0.020	B220649
RDI = Reportable Detection Li	mit		•		

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) RDL raised due to limited initial sample amount.

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		CFS920	CFS921	CFS922	CFS923					
Sampling Date		2023/11/28	2023/11/28	2023/11/28	2023/11/28					
Sampling Date		09:30	14:45	15:00	16:30					
COC Number		705547-03-01	705547-03-01	705547-03-01	705547-03-01					
	UNITS	WG-11222680-281123	WG-11222680-281123	WG-11222680-281123	WG-11222680-281123	RDL	QC Batch			
	UNITS	-KH-06	-KH-07	-KH-08	-KH-09	KDL	QC Batch			
Polycyclic Aromatics										
Naphthalene	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	B222170			
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B222170			
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B222170			
Phenanthrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B222170			
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B222170			
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	B222170			
Fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B222170			
Pyrene	ug/L	<0.020	<0.020	<0.020	<0.020	0.020	B222170			
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	B222170			
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	B222170			
Surrogate Recovery (%)		•	•			-				
D10-ANTHRACENE (sur.)	%	83	83	84	83	N/A	B222170			
D8-ACENAPHTHYLENE (sur.)	%	78	78	78	76	N/A	B222170			
D8-NAPHTHALENE (sur.)	%	75	76	77	75	N/A	B222170			
TERPHENYL-D14 (sur.)	%	73	73	73	72	N/A	B222170			
RDL = Reportable Detection L	imit	<u> </u>								

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		CFS924	CFS925		
Sampling Date		2023/11/29	2023/11/28		
Sampling Date		09:45	14:45		
COC Number		705547-03-01	705547-03-01		
	UNITS	WG-11222680-291123	WL-11222680-281123-	RDL	QC Batch
	UNITS	-KH-10	KH-01	KDL	QC Battii
Polycyclic Aromatics					
Naphthalene	ug/L	<0.10	1.6	0.10	B222170
Acenaphthene	ug/L	<0.050	0.48	0.050	B222170
Fluorene	ug/L	<0.050	0.37	0.050	B222170
Phenanthrene	ug/L	<0.050	0.47	0.050	B222170
Anthracene	ug/L	<0.010	0.098	0.010	B222170
Acridine	ug/L	<0.050	0.078	0.050	B222170
Fluoranthene	ug/L	<0.020	0.25	0.020	B222170
Pyrene	ug/L	<0.020	0.26	0.020	B222170
Benzo(a)anthracene	ug/L	<0.010	0.031	0.010	B222170
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	0.0050	B222170
Surrogate Recovery (%)	•				
D10-ANTHRACENE (sur.)	%	80	76	N/A	B222170
D8-ACENAPHTHYLENE (sur.)	%	75	77	N/A	B222170
D8-NAPHTHALENE (sur.)	%	74	72	N/A	B222170
TERPHENYL-D14 (sur.)	%	70	63	N/A	B222170
RDL = Reportable Detection L	imit				
N/A = Not Applicable					

N/A = Not Applicable

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		CFS925		CFS932	CFS932					
Sampling Date		2023/11/28 14:45		2023/11/28 10:00	2023/11/28 10:00					
COC Number		705547-03-01		705547-01-01	705547-01-01					
	UNITS	WL-11222680-281123- KH-01	RDL	WS-11222680-281123- KH-01	WS-11222680-281123- KH-01 Lab-Dup	RDL	QC Batch			
Dissolved Metals by ICP										
Dissolved Calcium (Ca)	mg/L	348	0.10	7.72	7.68	0.050	B222471			
	T .		0.050	0.000	0.704	0.050	D222471			
Dissolved Magnesium (Mg) mg/L 54.8 0.050 0.800 0.794 0.050 B222471 RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate										

Bureau Veritas ID		CFS933		
Sampling Date		2023/11/28		
oumpring Date		10:30		
COC Number		705547-01-01		
	UNITS	WS-11222680-281123-	RDL	QC Batch
		KH-02		,
		02		
Dissolved Metals by ICP		02		
Dissolved Metals by ICP Dissolved Calcium (Ca)	mg/L	5.05	0.050	B222471
	mg/L		0.050 0.050	B222471 B222471

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

TOTAL PETROLEUM HYDROCARBONS (WATER)

						1				
Bureau Veritas ID		CFS920	CFS921	CFS922	CFS923					
Sampling Date		2023/11/28	2023/11/28	2023/11/28	2023/11/28					
Sampling Date		09:30	14:45	15:00	16:30					
COC Number		705547-03-01	705547-03-01	705547-03-01	705547-03-01					
	UNITS	WG-11222680-281123	WG-11222680-281123	WG-11222680-281123	WG-11222680-281123	RDL	OC Batala			
	UNITS	-KH-06	-KH-07	-KH-08	-KH-09	KDL	QC Batch			
Calculated Parameters										
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B219718			
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B219718			
Ext. Pet. Hydrocarbon										
EPH (C10-C19)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B222174			
EPH (C19-C32)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	B222174			
Surrogate Recovery (%)										
O-TERPHENYL (sur.)	%	100	100	100	99	N/A	B222174			
RDL = Reportable Detection L	imit									
N/A = Not Applicable										

Bureau Veritas ID		CFS924	CFS925		
Sampling Date		2023/11/29	2023/11/28		
		09:45	14:45		
COC Number		705547-03-01	705547-03-01		
	UNITS	WG-11222680-291123	WL-11222680-281123-	RDL	QC Batch
	ONITS	-KH-10	KH-01	NDL	QC Dateil
Calculated Parameters					
LEPH (C10-C19 less PAH)	mg/L	<0.20	0.21	0.20	B219718
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	0.20	B219718
Ext. Pet. Hydrocarbon	•				
EPH (C10-C19)	mg/L	<0.20	0.21	0.20	B222174
EPH (C19-C32)	mg/L	<0.20	<0.20	0.20	B222174
Surrogate Recovery (%)					
O-TERPHENYL (sur.)	%	100	88	N/A	B222174
RDL = Reportable Detection	Limit				
N/A = Not Applicable					

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

MISCELLANEOUS (WATER)

Bureau Veritas ID		CFS920	CFS921	CFS922		
Sampling Date		2023/11/28 09:30	2023/11/28 14:45	2023/11/28 15:00		
COC Number		705547-03-01	705547-03-01	705547-03-01		
	UNITS	WG-11222680-281123 -KH-06	WG-11222680-281123 -KH-07	WG-11222680-281123 -KH-08	RDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B220212
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	<0.0050	0.0050	B220212
RDL = Reportable Detection Limit						
Bureau Veritas ID		CFS923	CFS924	CFS925		
Sampling Date		2023/11/28 16:30	2023/11/29 09:45	2023/11/28 14:45		
COC Number		705547-03-01	705547-03-01	705547-03-01		
	UNITS	WG-11222680-281123 -KH-09	WG-11222680-291123 -KH-10	WL-11222680-281123- KH-01	RDL	QC Batch
Calculated Parameters						
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	0.020	0.0050	B220212
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	0.021	0.0050	B220212
		•				-

Bureau Veritas ID		CFS932	CFS933		
Sampling Date		2023/11/28 10:00	2023/11/28 10:30		
COC Number		705547-01-01	705547-01-01		
	UNITS	WS-11222680-281123- KH-01	WS-11222680-281123- KH-02	RDL	QC Batch
Calculated Parameters					
Total Un-ionized Hydrogen Sulfide as S	mg/L	<0.0050	<0.0050	0.0050	B220212
Total Un-ionized Hydrogen Sulfide as H2S	mg/L	<0.0050	<0.0050	0.0050	B220212
RDL = Reportable Detection Limit					

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

CSR BTEX/VPH IN WATER (WATER)

Bureau Veritas ID		CFS925		
Sampling Date		2023/11/28		
Sampling Date		14:45		
COC Number		705547-03-01		
	UNITS	WL-11222680-281123-	RDL	QC Batch
	05	KH-01		QC Date
Calculated Parameters				
VPH (VHW6 to 10 - BTEX)	ug/L	<300	300	B219721
Volatiles				
Methyl-tert-butylether (MTBE)	ug/L	<4.0	4.0	B220357
Benzene	ug/L	<0.40	0.40	B220357
Toluene	ug/L	<0.40	0.40	B220357
Ethylbenzene	ug/L	<0.40	0.40	B220357
m & p-Xylene	ug/L	0.63 (1)	0.40	B220357
o-Xylene	ug/L	0.65	0.40	B220357
Styrene	ug/L	<0.40	0.40	B220357
Xylenes (Total)	ug/L	1.3	0.40	B220357
VH C6-C10	ug/L	<300	300	B220357
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	99	N/A	B220357
4-Bromofluorobenzene (sur.)	%	103	N/A	B220357
D4-1,2-Dichloroethane (sur.)	%	104	N/A	B220357

RDL = Reportable Detection Limit

N/A = Not Applicable

⁽¹⁾ Tentatively identified result and may be potentially biased high due to matrix interference.

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

COMBINED CP/NCP PHENOLS IN WATER (WATER)

Bureau Veritas ID		CFS925		
Sampling Date		2023/11/28 14:45		
COC Number		705547-03-01		
		WL-11222680-281123-		000.1
	UNITS	KH-01	RDL	QC Batch
Calculated Parameters				
Total Monochlorophenols	ug/L	<0.080	0.080	B220231
Total Dichlorophenols	ug/L	<0.10	0.10	B220231
Total Trichlorophenols	ug/L	0.16	0.10	B220231
Total Tetrachlorophenols	ug/L	<0.10	0.10	B220231
Total Chlorophenols	ug/L	0.52	0.10	B220231
Total Nonchlorinated Phenols	ug/L	<10	10	B220231
Total Phenolic Compounds	ug/L	<10	10	B220231
SEMI-VOLATILE ORGANICS	•			
Phenol	ug/L	<0.50	0.50	B224440
2-chlorophenol	ug/L	<0.080	0.080	B224439
3 & 4-chlorophenol	ug/L	<0.080	0.080	B224439
2-methylphenol	ug/L	<0.50	0.50	B224440
3 & 4-methylphenol	ug/L	<0.50	0.50	B224440
2-nitrophenol	ug/L	<0.50	0.50	B224440
2,4-dimethylphenol	ug/L	<0.50	0.50	B224440
2,4 + 2,5-Dichlorophenol	ug/L	<0.10	0.10	B224439
2,3-Dichlorophenol	ug/L	<0.10	0.10	B224439
2,6-dichlorophenol	ug/L	<0.10	0.10	B224439
3,5-Dichlorophenol	ug/L	<0.10	0.10	B224439
3,4-Dichlorophenol	ug/L	<0.10	0.10	B224439
2,4,5-trichlorophenol	ug/L	<0.10	0.10	B224439
2,4,6-trichlorophenol	ug/L	0.16	0.10	B224439
2,3,5-trichlorophenol	ug/L	<0.10	0.10	B224439
2,3,6-Trichlorophenol	ug/L	<0.10	0.10	B224439
2,3,4-trichlorophenol	ug/L	<0.10	0.10	B224439
3,4,5-Trichlorophenol	ug/L	<0.10	0.10	B224439
2,4-dinitrophenol	ug/L	<0.50	0.50	B224440
4,6-dinitro-2-methylphenol	ug/L	<0.50	0.50	B224440
2,3,4,6-tetrachlorophenol	ug/L	<0.10	0.10	B224439
2,3,4,5-tetrachlorophenol	ug/L	<0.10	0.10	B224439
2,3,5,6-tetrachlorophenol	ug/L	<0.10	0.10	B224439
RDL = Reportable Detection Limit	 t			

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

COMBINED CP/NCP PHENOLS IN WATER (WATER)

Bureau Veritas ID		CFS925		
Sampling Date		2023/11/28 14:45		
COC Number		705547-03-01		
	UNITS	WL-11222680-281123- KH-01	RDL	QC Batch
4-nitrophenol	ug/L	<0.50	0.50	B224440
3,4-Dimethylphenol	ug/L	<0.50	0.50	B224440
2,6-Dimethylphenol	ug/L	<0.50	0.50	B224440
Pentachlorophenol	ug/L	0.37	0.10	B224439
4-Chloro-3-Methylphenol	ug/L	<1.0	1.0	B224439
2-Hydroxyphenol (Catechol)	ug/L	<10	10	B224440
3-Hydroxyphenol (Resorcinol)	ug/L	<10	10	B224440
4-Hydroxyphenol (Hydroquinone)	ug/L	<1.0	1.0	B224440
Surrogate Recovery (%)	•			
2,4,6-TRIBROMOPHENOL (sur.)	%	95	N/A	B224439
2,4-DIBROMOPHENOL (sur.)	%	77	N/A	B224439
2,4,6-TRIBROMOPHENOL (sur.)	%	95	N/A	B224440
2,4-DIBROMOPHENOL (sur.)	%	77	N/A	B224440
RDL = Reportable Detection Limit N/A = Not Applicable				

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

CSR TOTAL METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		CFS925	CFS932	CFS933		
		2023/11/28	2023/11/28	2023/11/28		
Sampling Date		14:45	10:00	10:30		
COC Number		705547-03-01	705547-01-01	705547-01-01		
	UNITS	WL-11222680-281123-	WS-11222680-281123-	WS-11222680-281123-	BDI	OC Botob
	UNITS	KH-01	KH-01	KH-02	RDL	QC Batch
Calculated Parameters						
Total Hardness (CaCO3)	mg/L	934	19.8	16.0	0.50	B220026
Elements						
Total Mercury (Hg)	ug/L	<0.0019	<0.0019	<0.0019	0.0019	B223930
Total Metals by ICPMS	•					
Total Aluminum (Al)	ug/L	313	5.8	19.9	3.0	B221831
Total Antimony (Sb)	ug/L	3.21	<0.50	<0.50	0.50	B221831
Total Arsenic (As)	ug/L	4.86	<0.10	<0.10	0.10	B221831
Total Barium (Ba)	ug/L	116	2.3	2.4	1.0	B221831
Total Beryllium (Be)	ug/L	<0.10	<0.10	<0.10	0.10	B221831
Total Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	1.0	B221831
Total Boron (B)	ug/L	11500	351	167	50	B221831
Total Cadmium (Cd)	ug/L	0.111	<0.010	<0.010	0.010	B221831
Total Chromium (Cr)	ug/L	7.8	<1.0	<1.0	1.0	B221831
Total Cobalt (Co)	ug/L	4.38	<0.20	<0.20	0.20	B221831
Total Copper (Cu)	ug/L	66.0	<0.50	0.51	0.50	B221831
Total Iron (Fe)	ug/L	1970	<10	225	10	B221831
Total Lead (Pb)	ug/L	0.29	<0.20	<0.20	0.20	B221831
Total Lithium (Li)	ug/L	5.0	<2.0	<2.0	2.0	B221831
Total Manganese (Mn)	ug/L	1530	1.8	11.8	1.0	B221831
Total Molybdenum (Mo)	ug/L	7.7	<1.0	<1.0	1.0	B221831
Total Nickel (Ni)	ug/L	11.5	<1.0	<1.0	1.0	B221831
Total Phosphorus (P)	ug/L	164	<10	<10	10	B221831
Total Selenium (Se)	ug/L	0.50	<0.10	<0.10	0.10	B221831
Total Silicon (Si)	ug/L	14500	1590	956	100	B221831
Total Silver (Ag)	ug/L	<0.020	<0.020	<0.020	0.020	B221831
Total Strontium (Sr)	ug/L	1890	9.4	13.9	1.0	B221831
Total Thallium (TI)	ug/L	<0.010	<0.010	<0.010	0.010	B221831
Total Tin (Sn)	ug/L	<5.0	<5.0	<5.0	5.0	B221831
Total Titanium (Ti)	ug/L	16.7	<5.0	<5.0	5.0	B221831
Total Uranium (U)	ug/L	1.72	<0.10	<0.10	0.10	B221831
Total Vanadium (V)	ug/L	6.0	<5.0	<5.0	5.0	B221831
RDL = Reportable Detection	Limit					

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

CSR TOTAL METALS IN WATER WITH CV HG (WATER)

Bureau Veritas ID		CFS925	CFS932	CFS933		
Sampling Date		2023/11/28 14:45	2023/11/28 10:00	2023/11/28 10:30		
COC Number		705547-03-01	705547-01-01	705547-01-01		
	UNITS	WL-11222680-281123- KH-01	WS-11222680-281123- KH-01	WS-11222680-281123- KH-02	RDL	QC Batch
Total Zinc (Zn)	ug/L	67.0	<5.0	<5.0	5.0	B221831
Total Zirconium (Zr)	ug/L	1.55	<0.10	<0.10	0.10	B221831
Total Calcium (Ca)	mg/L	295	6.78	4.56	0.050	B220008
Total Magnesium (Mg)	mg/L	47.7	0.696	1.11	0.050	B220008
Total Potassium (K)	mg/L	39.2	0.069	0.130	0.050	B220008
Total Sodium (Na)	mg/L	276	0.699	3.77	0.050	B220008
Total Sulphur (S)	mg/L	235	<3.0	<3.0	3.0	B220008
RDL = Reportable Detection	n Limit					

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

Bureau Veritas ID		CFS920	CFS921		CFS922		
Committee Date		2023/11/28	2023/11/28		2023/11/28		
Sampling Date		09:30	14:45		15:00		
COC Number		705547-03-01	705547-03-01		705547-03-01		
	UNITS	WG-11222680-281123	WG-11222680-281123	QC Batch	WG-11222680-281123	RDL	QC Batch
	ONITS	-KH-06	-KH-07	QC Batch	-KH-08	NDL	QC Dateil
Calculated Parameters							
Dissolved Hardness (CaCO3)	mg/L	145	78.1	B220055	37.4	0.50	B220055
Elements	•		•		•	-	•
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	B223962	<0.0019	0.0019	B223962
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	<3.0	<3.0	B223175	3.9	3.0	B223187
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	B223175	<0.50	0.50	B223187
Dissolved Arsenic (As)	ug/L	0.21	<0.10	B223175	0.85	0.10	B223187
Dissolved Barium (Ba)	ug/L	9.2	2.2	B223175	1.9	1.0	B223187
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	B223175	<0.10	0.10	B223187
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	B223175	<1.0	1.0	B223187
Dissolved Boron (B)	ug/L	<50	<50	B223175	<50	50	B223187
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	B223175	<0.010	0.010	B223187
Dissolved Chromium (Cr)	ug/L	1.0	<1.0	B223175	<1.0	1.0	B223187
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	B223175	<0.20	0.20	B223187
Dissolved Copper (Cu)	ug/L	<0.20	0.26	B223175	<0.20	0.20	B223187
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	B223175	<5.0	5.0	B223187
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	B223175	<0.20	0.20	B223187
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	B223175	<2.0	2.0	B223187
Dissolved Manganese (Mn)	ug/L	<1.0	<1.0	B223175	<1.0	1.0	B223187
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	B223175	<1.0	1.0	B223187
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	B223175	<1.0	1.0	B223187
Dissolved Phosphorus (P)	ug/L	14	<10	B223175	29	10	B223187
Dissolved Selenium (Se)	ug/L	0.13	<0.10	B223175	<0.10	0.10	B223187
Dissolved Silicon (Si)	ug/L	13000	6950	B223175	4250	100	B223187
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	B223175	<0.020	0.020	B223187
Dissolved Strontium (Sr)	ug/L	74.7	40.2	B223175	15.2	1.0	B223187
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	B223175	<0.010	0.010	B223187
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	B223175	<5.0	5.0	B223187
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	B223175	<5.0	5.0	B223187
Dissolved Uranium (U)	ug/L	<0.10	<0.10	B223175	<0.10	0.10	B223187
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	B223175	7.2	5.0	B223187
RDL = Reportable Detection Li	mit						
L							

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

Bureau Veritas ID		CFS920	CFS921		CFS922		
Sampling Date		2023/11/28 09:30	2023/11/28 14:45		2023/11/28 15:00		
COC Number		705547-03-01	705547-03-01		705547-03-01		
	UNITS	WG-11222680-281123 -KH-06	WG-11222680-281123 -KH-07	QC Batch	WG-11222680-281123 -KH-08	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	B223175	<5.0	5.0	B223187
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	B223175	<0.10	0.10	B223187
Dissolved Calcium (Ca)	mg/L	46.0	24.7	B220184	12.1	0.050	B220184
Dissolved Magnesium (Mg)	mg/L	7.35	4.00	B220184	1.73	0.050	B220184
Dissolved Potassium (K)	mg/L	0.467	0.254	B220184	0.178	0.050	B220184
Dissolved Sodium (Na)	mg/L	5.88	3.84	B220184	1.05	0.050	B220184
Dissolved Sulphur (S)	mg/L	<3.0	<3.0	B220184	<3.0	3.0	B220184
RDL = Reportable Detection Li	mit						

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

Bureau Veritas ID		CFS923	CFS924		
Sampling Date		2023/11/28	2023/11/29		
Jamping Date		16:30	09:45		
COC Number		705547-03-01	705547-03-01		
	UNITS		WG-11222680-291123	RDL	QC Batch
		-KH-09	-KH-10		
Calculated Parameters					
Dissolved Hardness (CaCO3)	mg/L	145	44.7	0.50	B220055
Elements					
Dissolved Mercury (Hg)	ug/L	<0.0019	<0.0019	0.0019	B223962
Dissolved Metals by ICPMS					
Dissolved Aluminum (Al)	ug/L	<3.0	<3.0	3.0	B223187
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.50	B223187
Dissolved Arsenic (As)	ug/L	0.14	<0.10	0.10	B223187
Dissolved Barium (Ba)	ug/L	13.2	<1.0	1.0	B223187
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	0.10	B223187
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	1.0	B223187
Dissolved Boron (B)	ug/L	<50	<50	50	B223187
Dissolved Cadmium (Cd)	ug/L	0.012	<0.010	0.010	B223187
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	B223187
Dissolved Cobalt (Co)	ug/L	<0.20	<0.20	0.20	B223187
Dissolved Copper (Cu)	ug/L	0.45	<0.20	0.20	B223187
Dissolved Iron (Fe)	ug/L	<5.0	<5.0	5.0	B223187
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	0.20	B223187
Dissolved Lithium (Li)	ug/L	<2.0	<2.0	2.0	B223187
Dissolved Manganese (Mn)	ug/L	15.7	<1.0	1.0	B223187
Dissolved Molybdenum (Mo)	ug/L	<1.0	<1.0	1.0	B223187
Dissolved Nickel (Ni)	ug/L	<1.0	<1.0	1.0	B223187
Dissolved Phosphorus (P)	ug/L	<10	<10	10	B223187
Dissolved Selenium (Se)	ug/L	<0.10	0.13	0.10	B223187
Dissolved Silicon (Si)	ug/L	14500	7420	100	B223187
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	0.020	B223187
Dissolved Strontium (Sr)	ug/L	98.7	24.8	1.0	B223187
Dissolved Thallium (TI)	ug/L	<0.010	<0.010	0.010	B223187
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	5.0	B223187
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	B223187
Dissolved Uranium (U)	ug/L	<0.10	<0.10	0.10	B223187
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	5.0	B223187
RDL = Reportable Detection Li	mit	•	•		

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

Bureau Veritas ID		CFS923	CFS924			
Sampling Date		2023/11/28 16:30	2023/11/29 09:45			
COC Number		705547-03-01	705547-03-01			
	UNITS		WG-11222680-291123	RDL	QC Batch	
		-KH-09	-KH-10			
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	B223187	
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	0.10	B223187	
Dissolved Calcium (Ca)	mg/L	35.7	12.8	0.050	B220184	
Dissolved Magnesium (Mg)	mg/L	13.5	3.07	0.050	B220184	
Dissolved Potassium (K)	mg/L	1.04	0.175	0.050	B220184	
Dissolved Sodium (Na)	mg/L	26.9	6.77	0.050	B220184	
Dissolved Sulphur (S)	mg/L	<3.0	<3.0	3.0	B220184	
RDL = Reportable Detection Limit						

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

CSR VOC + VPH IN WATER (WATER)

Bureau Veritas ID		CFS926	CFS926							
Sampling Date		2023/11/28	2023/11/28							
COC Number		705547-03-01	705547-03-01							
	UNITS	TRIP BLANK	TRIP BLANK Lab-Dup	RDL	QC Batch					
Calculated Parameters										
VPH (VHW6 to 10 - BTEX)	ug/L	<300	N/A	300	B219721					
Volatiles										
VH C6-C10	ug/L	<300	<300	300	B222071					
Benzene	ug/L	<0.40	<0.40	0.40	B222071					
Ethylbenzene	ug/L	<0.40	<0.40	0.40	B222071					
Methyl-tert-butylether (MTBE)	ug/L	<4.0	<4.0	4.0	B222071					
Styrene	ug/L	<0.50	<0.50	0.50	B222071					
Toluene	ug/L	<0.40	<0.40	0.40	B222071					
m & p-Xylene	ug/L	<0.40	<0.40	0.40	B222071					
o-Xylene	ug/L	<0.40	<0.40	0.40	B222071					
Xylenes (Total)	ug/L	<0.40	<0.40	0.40	B222071					
Surrogate Recovery (%)	•									
1,4-Difluorobenzene (sur.)	%	102	102	N/A	B222071					
4-Bromofluorobenzene (sur.)	%	96	95	N/A	B222071					
D4-1,2-Dichloroethane (sur.)	%	80	79	N/A	B222071					
'	RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate									

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B220357	1,4-Difluorobenzene (sur.)	2023/12/01	94	70 - 130	96	70 - 130	98	%		
B220357	4-Bromofluorobenzene (sur.)	2023/12/01	105	70 - 130	105	70 - 130	104	%		
B220357	D4-1,2-Dichloroethane (sur.)	2023/12/01	100	70 - 130	101	70 - 130	104	%		
B222071	1,4-Difluorobenzene (sur.)	2023/12/04	100 (11)	50 - 140	100	50 - 140	102	%		
B222071	4-Bromofluorobenzene (sur.)	2023/12/04	105 (11)	50 - 140	105	50 - 140	97	%		
B222071	D4-1,2-Dichloroethane (sur.)	2023/12/04	78 (11)	50 - 140	77	50 - 140	78	%		
B222170	D10-ANTHRACENE (sur.)	2023/12/04			90	50 - 140	84	%		
B222170	D8-ACENAPHTHYLENE (sur.)	2023/12/04			82	50 - 140	80	%		
B222170	D8-NAPHTHALENE (sur.)	2023/12/04			77	50 - 140	75	%		
B222170	TERPHENYL-D14 (sur.)	2023/12/04			76	50 - 140	73	%		
B222174	O-TERPHENYL (sur.)	2023/12/04			98	60 - 140	100	%		
B224439	2,4,6-TRIBROMOPHENOL (sur.)	2023/12/06			109	60 - 130	101	%		
B224439	2,4-DIBROMOPHENOL (sur.)	2023/12/06			96	60 - 130	93	%		
B224440	2,4,6-TRIBROMOPHENOL (sur.)	2023/12/06			109	60 - 130	101	%		
B224440	2,4-DIBROMOPHENOL (sur.)	2023/12/06			96	60 - 130	93	%		
B220019	Orthophosphate (P)	2023/12/01	NC	80 - 120	100	80 - 120	< 0.0030	mg/L	2.3 (1)	20
B220137	Biochemical Oxygen Demand	2023/12/06			101	85 - 115	<2.0 (2)	mg/L	4.9 (1)	20
B220197	Total Suspended Solids	2023/12/02	100	80 - 120	101	80 - 120	<1.0	mg/L	NC (1)	20
B220245	Chloride (CI)	2023/12/01	104	80 - 120	102	80 - 120	<1.0	mg/L	2.8 (1)	20
B220245	Sulphate (SO4)	2023/12/01	NC	80 - 120	99	80 - 120	<1.0	mg/L	0.87 (1)	20
B220357	Benzene	2023/12/01	98	70 - 130	100	70 - 130	< 0.40	ug/L	5.0 (1)	30
B220357	Ethylbenzene	2023/12/01	113	70 - 130	106	70 - 130	< 0.40	ug/L	NC (1)	30
B220357	m & p-Xylene	2023/12/01	111	70 - 130	106	70 - 130	<0.40	ug/L	NC (1)	30
B220357	Methyl-tert-butylether (MTBE)	2023/12/01	100	70 - 130	98	70 - 130	<4.0	ug/L	NC (1)	30
B220357	o-Xylene	2023/12/01	112	70 - 130	106	70 - 130	<0.40	ug/L	NC (1)	30
B220357	Styrene	2023/12/01	113	70 - 130	106	70 - 130	<0.40	ug/L	NC (1)	30
B220357	Toluene	2023/12/01	104	70 - 130	101	70 - 130	<0.40	ug/L	NC (1)	30
B220357	VH C6-C10	2023/12/01			82	70 - 130	<300	ug/L	NC (1)	30
B220357	Xylenes (Total)	2023/12/01					<0.40	ug/L	NC (1)	30
B220389	Alkalinity (PP as CaCO3)	2023/12/01					<1.0	mg/L	NC (3)	20
B220389	Alkalinity (Total as CaCO3)	2023/12/01			99	80 - 120	<1.0	mg/L	0.31 (3)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B220389	Bicarbonate (HCO3)	2023/12/01					<1.0	mg/L	0.31 (3)	20
B220389	Carbonate (CO3)	2023/12/01					<1.0	mg/L	NC (3)	20
B220389	Hydroxide (OH)	2023/12/01					<1.0	mg/L	NC (3)	20
B220393	рН	2023/12/01			100	97 - 103			0.31 (3)	N/A
B220395	Conductivity	2023/12/01			102	90 - 110	<2.0	uS/cm		
B220589	Total Dissolved Solids	2023/12/02	101 (4)	80 - 120	100	80 - 120	<10	mg/L	0 (5)	20
B220590	Chloride (CI)	2023/12/01	106 (6)	80 - 120	95	80 - 120	<1.0	mg/L	0.71 (5)	20
B220590	Sulphate (SO4)	2023/12/01	106 (6)	80 - 120	97	80 - 120	<1.0	mg/L	3.1 (5)	20
B220649	Nitrate plus Nitrite (N)	2023/12/01	NC (7)	80 - 120	110	80 - 120	<0.020	mg/L	0.033 (8)	25
B220651	Nitrite (N)	2023/12/01	106 (7)	80 - 120	106	80 - 120	<0.0050	mg/L	NC (8)	20
B220735	Dissolved Fluoride (F)	2023/12/02	98 (9)	80 - 120	101	80 - 120	<0.050	mg/L	NC (10)	20
B221831	Total Aluminum (AI)	2023/12/04	NC	80 - 120	99	80 - 120	<3.0	ug/L	0.82 (1)	20
B221831	Total Antimony (Sb)	2023/12/04	101	80 - 120	101	80 - 120	<0.50	ug/L	NC (1)	20
B221831	Total Arsenic (As)	2023/12/04	104	80 - 120	99	80 - 120	<0.10	ug/L	1.7 (1)	20
B221831	Total Barium (Ba)	2023/12/04	100	80 - 120	99	80 - 120	<1.0	ug/L	1.5 (1)	20
B221831	Total Beryllium (Be)	2023/12/04	91	80 - 120	96	80 - 120	<0.10	ug/L	1.4 (1)	20
B221831	Total Bismuth (Bi)	2023/12/04	93	80 - 120	96	80 - 120	<1.0	ug/L	NC (1)	20
B221831	Total Boron (B)	2023/12/04	85	80 - 120	101	80 - 120	<50	ug/L	11 (1)	20
B221831	Total Cadmium (Cd)	2023/12/04	NC	80 - 120	99	80 - 120	<0.010	ug/L	1.1 (1)	20
B221831	Total Chromium (Cr)	2023/12/04	89	80 - 120	93	80 - 120	<1.0	ug/L	NC (1)	20
B221831	Total Cobalt (Co)	2023/12/04	NC	80 - 120	94	80 - 120	<0.20	ug/L	2.5 (1)	20
B221831	Total Copper (Cu)	2023/12/04	85	80 - 120	93	80 - 120	<0.50	ug/L	0.65 (1)	20
B221831	Total Iron (Fe)	2023/12/04	NC	80 - 120	102	80 - 120	<10	ug/L	0.50 (1)	20
B221831	Total Lead (Pb)	2023/12/04	96	80 - 120	97	80 - 120	<0.20	ug/L	NC (1)	20
B221831	Total Lithium (Li)	2023/12/04	NC	80 - 120	104	80 - 120	<2.0	ug/L	1.7 (1)	20
B221831	Total Manganese (Mn)	2023/12/04	NC	80 - 120	97	80 - 120	<1.0	ug/L	0.91 (1)	20
B221831	Total Molybdenum (Mo)	2023/12/04	104	80 - 120	100	80 - 120	<1.0	ug/L	NC (1)	20
B221831	Total Nickel (Ni)	2023/12/04	NC	80 - 120	96	80 - 120	<1.0	ug/L	1.2 (1)	20
B221831	Total Phosphorus (P)	2023/12/04	105	80 - 120	100	80 - 120	<10	ug/L	NC (1)	20
B221831	Total Selenium (Se)	2023/12/04	104	80 - 120	100	80 - 120	<0.10	ug/L	0.41 (1)	20
B221831	Total Silicon (Si)	2023/12/04	NC	80 - 120	114	80 - 120	<100	ug/L	0.029 (1)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

			Matrix Spike		Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B221831	Total Silver (Ag)	2023/12/04	93	80 - 120	99	80 - 120	<0.020	ug/L	NC (1)	20
B221831	Total Strontium (Sr)	2023/12/04	NC	80 - 120	96	80 - 120	<1.0	ug/L	0.074 (1)	20
B221831	Total Thallium (TI)	2023/12/04	97	80 - 120	96	80 - 120	<0.010	ug/L	0.063 (1)	20
B221831	Total Tin (Sn)	2023/12/04	98	80 - 120	100	80 - 120	<5.0	ug/L	NC (1)	20
B221831	Total Titanium (Ti)	2023/12/04	100	80 - 120	99	80 - 120	<5.0	ug/L	NC (1)	20
B221831	Total Uranium (U)	2023/12/04	105	80 - 120	100	80 - 120	<0.10	ug/L	1.8 (1)	20
B221831	Total Vanadium (V)	2023/12/04	94	80 - 120	95	80 - 120	<5.0	ug/L	NC (1)	20
B221831	Total Zinc (Zn)	2023/12/04	NC	80 - 120	98	80 - 120	<5.0	ug/L	1.4 (1)	20
B221831	Total Zirconium (Zr)	2023/12/04	105	80 - 120	98	80 - 120	<0.10	ug/L	NC (1)	20
B221929	Total Sulphide	2023/12/05	90	80 - 120	106	80 - 120	<0.0018	mg/L	NC (1)	20
B222071	Benzene	2023/12/05	114 (11)	50 - 140	111	60 - 130	<0.40	ug/L	NC (12)	30
B222071	Ethylbenzene	2023/12/05	117 (11)	50 - 140	115	60 - 130	<0.40	ug/L	NC (12)	30
B222071	m & p-Xylene	2023/12/05	101 (11)	50 - 140	99	60 - 130	<0.40	ug/L	NC (12)	30
B222071	Methyl-tert-butylether (MTBE)	2023/12/05	110 (11)	50 - 140	106	60 - 130	<4.0	ug/L	NC (12)	30
B222071	o-Xylene	2023/12/05	119 (11)	50 - 140	117	60 - 130	<0.40	ug/L	NC (12)	30
B222071	Styrene	2023/12/05	98 (11)	50 - 140	96	60 - 130	<0.50	ug/L	NC (12)	30
B222071	Toluene	2023/12/05	116 (11)	50 - 140	115	60 - 130	<0.40	ug/L	NC (12)	30
B222071	VH C6-C10	2023/12/05			87	70 - 130	<300	ug/L	NC (12)	30
B222071	Xylenes (Total)	2023/12/05					<0.40	ug/L	NC (12)	30
B222170	Acenaphthene	2023/12/05			82	50 - 140	<0.050	ug/L	7.8 (1)	40
B222170	Acridine	2023/12/05			93	50 - 140	<0.050	ug/L	6.4 (1)	40
B222170	Anthracene	2023/12/05			85	50 - 140	<0.010	ug/L	4.7 (1)	40
B222170	Benzo(a)anthracene	2023/12/05			68	50 - 140	<0.010	ug/L	NC (1)	40
B222170	Benzo(a)pyrene	2023/12/05			83	50 - 140	<0.0050	ug/L	NC (1)	40
B222170	Fluoranthene	2023/12/05			65	50 - 140	<0.020	ug/L	6.8 (1)	40
B222170	Fluorene	2023/12/05			82	50 - 140	<0.050	ug/L	8.8 (1)	40
B222170	Naphthalene	2023/12/05			79	50 - 140	<0.10	ug/L	9.6 (1)	40
B222170	Phenanthrene	2023/12/05			86	50 - 140	<0.050	ug/L	7.4 (1)	40
B222170	Pyrene	2023/12/05			76	50 - 140	<0.020	ug/L	7.5 (1)	40
B222174	EPH (C10-C19)	2023/12/04			91	70 - 130	<0.20	mg/L	NC (1)	30
B222174	EPH (C19-C32)	2023/12/04			92	70 - 130	<0.20	mg/L	NC (1)	30

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

			Matrix Spike		Spiked	Blank	Method Blank		RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B222249	Chemical Oxygen Demand	2023/12/04	NC	80 - 120	102	80 - 120	<10	mg/L	0.85 (1)	20
B222471	Dissolved Calcium (Ca)	2023/12/04	95 (13)	80 - 120	98	80 - 120	<0.050	mg/L	0.54 (14)	20
B222471	Dissolved Magnesium (Mg)	2023/12/04	94 (13)	80 - 120	95	80 - 120	<0.050	mg/L	0.71 (14)	20
B223175	Dissolved Aluminum (Al)	2023/12/05	105	80 - 120	103	80 - 120	<3.0	ug/L	NC (1)	20
B223175	Dissolved Antimony (Sb)	2023/12/05	106	80 - 120	101	80 - 120	<0.50	ug/L	NC (1)	20
B223175	Dissolved Arsenic (As)	2023/12/05	109	80 - 120	102	80 - 120	<0.10	ug/L	0.60 (1)	20
B223175	Dissolved Barium (Ba)	2023/12/05	NC	80 - 120	101	80 - 120	<1.0	ug/L	0.056 (1)	20
B223175	Dissolved Beryllium (Be)	2023/12/05	106	80 - 120	105	80 - 120	<0.10	ug/L	NC (1)	20
B223175	Dissolved Bismuth (Bi)	2023/12/05	100	80 - 120	101	80 - 120	<1.0	ug/L	NC (1)	20
B223175	Dissolved Boron (B)	2023/12/05	109	80 - 120	115	80 - 120	<50	ug/L	NC (1)	20
B223175	Dissolved Cadmium (Cd)	2023/12/05	102	80 - 120	101	80 - 120	< 0.010	ug/L	NC (1)	20
B223175	Dissolved Chromium (Cr)	2023/12/05	100	80 - 120	100	80 - 120	<1.0	ug/L	NC (1)	20
B223175	Dissolved Cobalt (Co)	2023/12/05	97	80 - 120	98	80 - 120	<0.20	ug/L	3.8 (1)	20
B223175	Dissolved Copper (Cu)	2023/12/05	95	80 - 120	98	80 - 120	<0.20	ug/L	NC (1)	20
B223175	Dissolved Iron (Fe)	2023/12/05	NC	80 - 120	104	80 - 120	<5.0	ug/L	0.59 (1)	20
B223175	Dissolved Lead (Pb)	2023/12/05	102	80 - 120	101	80 - 120	<0.20	ug/L	NC (1)	20
B223175	Dissolved Lithium (Li)	2023/12/05	104	80 - 120	104	80 - 120	<2.0	ug/L	NC (1)	20
B223175	Dissolved Manganese (Mn)	2023/12/05	NC	80 - 120	102	80 - 120	<1.0	ug/L	0.083 (1)	20
B223175	Dissolved Molybdenum (Mo)	2023/12/05	107	80 - 120	102	80 - 120	<1.0	ug/L	4.2 (1)	20
B223175	Dissolved Nickel (Ni)	2023/12/05	100	80 - 120	101	80 - 120	<1.0	ug/L	1.1 (1)	20
B223175	Dissolved Phosphorus (P)	2023/12/05	112	80 - 120	102	80 - 120	<10	ug/L	0.33 (1)	20
B223175	Dissolved Selenium (Se)	2023/12/05	110	80 - 120	103	80 - 120	<0.10	ug/L	NC (1)	20
B223175	Dissolved Silicon (Si)	2023/12/05	NC	80 - 120	118	80 - 120	<100	ug/L	1.8 (1)	20
B223175	Dissolved Silver (Ag)	2023/12/05	96	80 - 120	102	80 - 120	<0.020	ug/L	NC (1)	20
B223175	Dissolved Strontium (Sr)	2023/12/05	NC	80 - 120	102	80 - 120	<1.0	ug/L	1.3 (1)	20
B223175	Dissolved Thallium (TI)	2023/12/05	103	80 - 120	102	80 - 120	<0.010	ug/L	NC (1)	20
B223175	Dissolved Tin (Sn)	2023/12/05	104	80 - 120	102	80 - 120	<5.0	ug/L	NC (1)	20
B223175	Dissolved Titanium (Ti)	2023/12/05	104	80 - 120	102	80 - 120	<5.0	ug/L	NC (1)	20
B223175	Dissolved Uranium (U)	2023/12/05	110	80 - 120	105	80 - 120	<0.10	ug/L	0.62 (1)	20
B223175	Dissolved Vanadium (V)	2023/12/05	104	80 - 120	101	80 - 120	<5.0	ug/L	NC (1)	20
B223175	Dissolved Zinc (Zn)	2023/12/05	96	80 - 120	103	80 - 120	<5.0	ug/L	NC (1)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

			Matrix Spike		Spiked Blank		Method Blank		RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B223175	Dissolved Zirconium (Zr)	2023/12/05	110	80 - 120	100	80 - 120	<0.10	ug/L	NC (1)	20
B223187	Dissolved Aluminum (Al)	2023/12/05	101	80 - 120	103	80 - 120	<3.0	ug/L	NC (1)	20
B223187	Dissolved Antimony (Sb)	2023/12/05	102	80 - 120	103	80 - 120	<0.50	ug/L	NC (1)	20
B223187	Dissolved Arsenic (As)	2023/12/05	104	80 - 120	103	80 - 120	<0.10	ug/L	0.50 (1)	20
B223187	Dissolved Barium (Ba)	2023/12/05	NC	80 - 120	101	80 - 120	<1.0	ug/L	2.9 (1)	20
B223187	Dissolved Beryllium (Be)	2023/12/05	100	80 - 120	99	80 - 120	<0.10	ug/L	NC (1)	20
B223187	Dissolved Bismuth (Bi)	2023/12/05	97	80 - 120	100	80 - 120	<1.0	ug/L	NC (1)	20
B223187	Dissolved Boron (B)	2023/12/05	105	80 - 120	105	80 - 120	<50	ug/L	NC (1)	20
B223187	Dissolved Cadmium (Cd)	2023/12/05	99	80 - 120	101	80 - 120	< 0.010	ug/L	6.8 (1)	20
B223187	Dissolved Chromium (Cr)	2023/12/05	97	80 - 120	100	80 - 120	<1.0	ug/L	NC (1)	20
B223187	Dissolved Cobalt (Co)	2023/12/05	94	80 - 120	98	80 - 120	<0.20	ug/L	NC (1)	20
B223187	Dissolved Copper (Cu)	2023/12/05	92	80 - 120	98	80 - 120	<0.20	ug/L	0.14 (1)	20
B223187	Dissolved Iron (Fe)	2023/12/05	101	80 - 120	103	80 - 120	<5.0	ug/L	NC (1)	20
B223187	Dissolved Lead (Pb)	2023/12/05	98	80 - 120	100	80 - 120	<0.20	ug/L	NC (1)	20
B223187	Dissolved Lithium (Li)	2023/12/05	98	80 - 120	102	80 - 120	<2.0	ug/L	NC (1)	20
B223187	Dissolved Manganese (Mn)	2023/12/05	98	80 - 120	102	80 - 120	<1.0	ug/L	2.2 (1)	20
B223187	Dissolved Molybdenum (Mo)	2023/12/05	103	80 - 120	101	80 - 120	<1.0	ug/L	0.66 (1)	20
B223187	Dissolved Nickel (Ni)	2023/12/05	95	80 - 120	101	80 - 120	<1.0	ug/L	NC (1)	20
B223187	Dissolved Phosphorus (P)	2023/12/05	107	80 - 120	102	80 - 120	<10	ug/L	0.053 (1)	20
B223187	Dissolved Selenium (Se)	2023/12/05	103	80 - 120	100	80 - 120	<0.10	ug/L	0.15 (1)	20
B223187	Dissolved Silicon (Si)	2023/12/05	NC	80 - 120	114	80 - 120	<100	ug/L	2.1 (1)	20
B223187	Dissolved Silver (Ag)	2023/12/05	98	80 - 120	102	80 - 120	<0.020	ug/L	NC (1)	20
B223187	Dissolved Strontium (Sr)	2023/12/05	NC	80 - 120	103	80 - 120	<1.0	ug/L	1.9 (1)	20
B223187	Dissolved Thallium (TI)	2023/12/05	100	80 - 120	100	80 - 120	<0.010	ug/L	3.3 (1)	20
B223187	Dissolved Tin (Sn)	2023/12/05	100	80 - 120	102	80 - 120	<5.0	ug/L	NC (1)	20
B223187	Dissolved Titanium (Ti)	2023/12/05	101	80 - 120	102	80 - 120	<5.0	ug/L	NC (1)	20
B223187	Dissolved Uranium (U)	2023/12/05	104	80 - 120	104	80 - 120	<0.10	ug/L	2.1 (1)	20
B223187	Dissolved Vanadium (V)	2023/12/05	100	80 - 120	103	80 - 120	<5.0	ug/L	NC (1)	20
B223187	Dissolved Zinc (Zn)	2023/12/05	94	80 - 120	103	80 - 120	<5.0	ug/L	0.012 (1)	20
B223187	Dissolved Zirconium (Zr)	2023/12/05	103	80 - 120	101	80 - 120	<0.10	ug/L	NC (1)	20
B223595	Total Ammonia (N)	2023/12/05	9.9 (15)	80 - 120	100	80 - 120	< 0.015	mg/L	1.4 (1)	20

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

			Matrix Spike		Spiked	Blank	Method Blank		RP	 D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B223930	Total Mercury (Hg)	2023/12/05	104	80 - 120	110	80 - 120	<0.0019	ug/L	NC (1)	20
B223962	Dissolved Mercury (Hg)	2023/12/05	100	80 - 120	105	80 - 120	<0.0019	ug/L	NC (1)	20
B224439	2,3,4,5-tetrachlorophenol	2023/12/06			100	60 - 130	<0.10	ug/L		
B224439	2,3,4,6-tetrachlorophenol	2023/12/06			83	60 - 130	<0.10	ug/L		
B224439	2,3,4-trichlorophenol	2023/12/06			82	60 - 130	<0.10	ug/L		
B224439	2,3,5,6-tetrachlorophenol	2023/12/06			84	60 - 130	<0.10	ug/L		
B224439	2,3,5-trichlorophenol	2023/12/06			84	60 - 130	<0.10	ug/L		
B224439	2,3,6-Trichlorophenol	2023/12/06			75	60 - 130	<0.10	ug/L		
B224439	2,3-Dichlorophenol	2023/12/06			76	60 - 130	<0.10	ug/L		
B224439	2,4 + 2,5-Dichlorophenol	2023/12/06			74	60 - 130	<0.10	ug/L		
B224439	2,4,5-trichlorophenol	2023/12/06			84	60 - 130	<0.10	ug/L		
B224439	2,4,6-trichlorophenol	2023/12/06			75	60 - 130	<0.10	ug/L		
B224439	2,6-dichlorophenol	2023/12/06			72	60 - 130	<0.10	ug/L		
B224439	2-chlorophenol	2023/12/06			62	60 - 130	<0.080	ug/L		
B224439	3 & 4-chlorophenol	2023/12/06			84	60 - 130	<0.080	ug/L		
B224439	3,4,5-Trichlorophenol	2023/12/06			88	60 - 130	<0.10	ug/L		
B224439	3,4-Dichlorophenol	2023/12/06			91	60 - 130	<0.10	ug/L		
B224439	3,5-Dichlorophenol	2023/12/06			95	60 - 130	<0.10	ug/L		
B224439	4-Chloro-3-Methylphenol	2023/12/06			80	60 - 130	<1.0	ug/L		
B224439	Pentachlorophenol	2023/12/06			89	60 - 130	<0.10	ug/L		
B224440	2,4-dimethylphenol	2023/12/06			128	60 - 130	<0.50	ug/L		
B224440	2,4-dinitrophenol	2023/12/06			96	30 - 130	<0.50	ug/L		
B224440	2,6-Dimethylphenol	2023/12/06			60	60 - 130	<0.50	ug/L		
B224440	2-Hydroxyphenol (Catechol)	2023/12/06			96	60 - 130	<10	ug/L		
B224440	2-methylphenol	2023/12/06			68	60 - 130	<0.50	ug/L		
B224440	2-nitrophenol	2023/12/06			53	30 - 130	<0.50	ug/L		
B224440	3 & 4-methylphenol	2023/12/06			70	60 - 130	<0.50	ug/L		
B224440	3,4-Dimethylphenol	2023/12/06			70	60 - 130	<0.50	ug/L		
B224440	3-Hydroxyphenol (Resorcinol)	2023/12/06			81	60 - 130	<10	ug/L		
B224440	4,6-dinitro-2-methylphenol	2023/12/06			85	30 - 130	<0.50	ug/L		
B224440	4-Hydroxyphenol (Hydroquinone)	2023/12/06			97	60 - 130	<1.0	ug/L		

GHD Limited

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

	Matrix Spike		Spiked Blank		Method Blank		RPD			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B224440	4-nitrophenol	2023/12/06			102	30 - 130	<0.50	ug/L		
B224440	Phenol	2023/12/06			83	60 - 130	<0.50	ug/L		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Method blank exceeds 0.2 mg/L stipulated in Reference Method. No other Quality Control measures affected.
- (3) Duplicate Parent ID [CFS925-01]
- (4) Matrix Spike Parent ID [CFS922-01]
- (5) Duplicate Parent ID [CFS921-01]
- (6) Matrix Spike Parent ID [CFS921-01]
- (7) Matrix Spike Parent ID [CFS920-01]
- (8) Duplicate Parent ID [CFS920-01]
- (9) Matrix Spike Parent ID [CFS933-01]
- (10) Duplicate Parent ID [CFS932-01]
- (11) Matrix Spike Parent ID [CFS926-01]
- (12) Duplicate Parent ID [CFS926-01]
- (13) Matrix Spike Parent ID [CFS932-06]
- (14) Duplicate Parent ID [CFS932-06]
- (15) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Client Project #: 11222680-15.1

Site Location: NEW LANDFILL-UPLAND LANDFILL

Your P.O. #: 735-002640-4 Sampler Initials: KH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

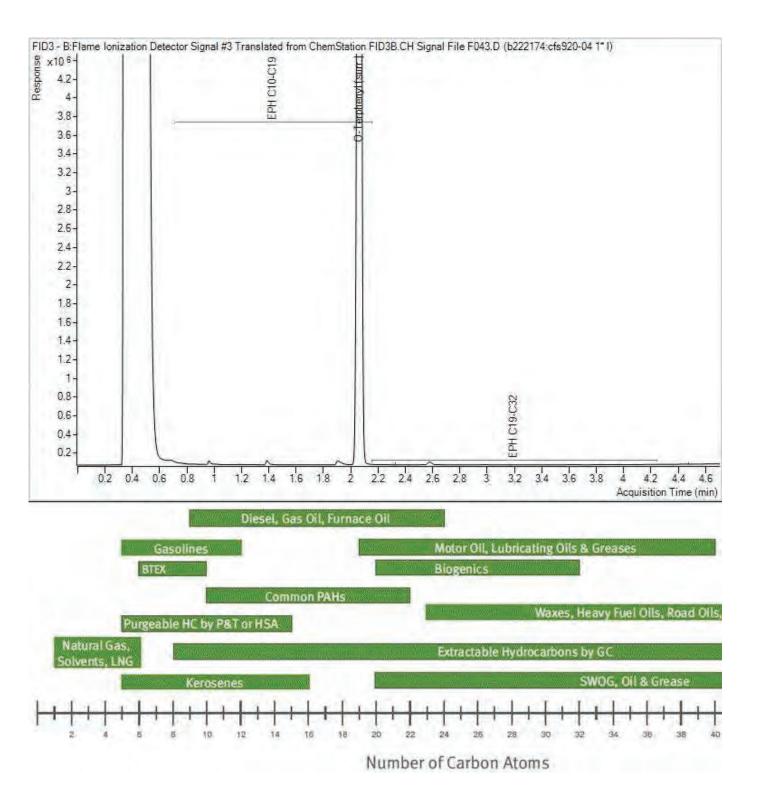
David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

EU FEAD		Bureau Veritas 4606 Canada Way, Burnab	y, British Columbia	Canada V5G 1K5	Tel:(604) 734 7276	Foll-free:800-5	63-6266 Fax:	(604) 731 23	86 www.bvn	a.com	200 300 10								Page of 1/2
		INVOICE TO:				Report Info	rmation						Project	nformatic	n			MARKANA PER	nly
Company Name	#163 GHD L		1 11(3)316(3)2	Company Na	me	8				(Quotation#		C30090				יבבט ב 12 ים ווו	2. COC A NATIONAL PROPERTY (A MARINET A MARI	Bottle Order #:
Contact Name	AP Invoices -		a Morrey	Contact Nam	Stephanie	Berton	6				P.O. #	50	735-002			_ (.	39//5	7_coc	
Address	455 PHILLIP		2.7.3	Address							roject#		1122268						705547
	WATERLOO			_	-,					F	Project Name	•	Uplan	d la	ndfil			Chain Of Custody Record	Project Manager
Phone	(519) 884-051	10 Fax (519	725-1394	Phone	Notional	DC	Fax:	t-obo	nio hauto		ite#		Groundy		Λ.	· mgm	-		Brody Andersen
Email		35@ghd-com wvvicing	Canada (2)	CEmail	NationalED	DSupporte	ymaxxam.	ca,stepna			,		K. Ho		, D	Ton	j .	C#705547-03-01	
Regulatory Crit	teria;		0		Instructions	- JE .	` -		ANAI	y 1000 100 100 100 100 100 100 100 100 1	QUESTED (PLEASE E	BE SPECIFIC	·) ·		~		Turnaround Time (TAT)	Property Community
CSR			Ret	tles fie	d filter	red				(Calc)			(en	(O)		\$ 35 A		Please provide advance notice	for rush projects
			and	d preser	d filter red as		3,			Ö			Dissolved Solids (Filt. Residue)	LEPH/HEPH with subtracted PAHs	800,000,TSS dissolved Andress	No 44)		(Standard) TAT:	·
CCME			70	dicaled	1.		7/N) NO2, NO3			Sulphide, Un-ionized (as H2S)		ρ̈́	8	be F	SE		3. 2. 2. 23	applied if Rush TAT is not specified):	2
BC Wate	er Quality						z Ö			S		5	<u>ii</u>	act	, J	X/VPH, Phenas metals wy cv Hg	ſ	d TAT = 5-7 Working days for most tests	
H	e Berner		Te	molph he	ldmessyum a email	ments	804, I		<u>0</u>	Q (8)		£	gg	ubtr	d H	2 3	Please n	note: Standard TAT for certain tests such a: ontact your Project Manager for details.	s BOD and Dioxins/Furans are
Other	. —		Will'y	ne sent vi	a emuil		SC SC	₽	ပ္မ	ize	(g	× s	Soil	is .	3	-13	Joh So	pecific Rush TAT (if applies to entire sub	mission)
		***************************************					128 1 120	Ka iii	128	.Ē	Į.	etal	pe/	×	G S	TES	1 DAY		Required:
							yity	₹	+	Ę.	Ż.	2 0	sol	<u>d.</u>		># S			- L
SAMPLE	S MUST BE KEPT (COOL (< 10°C) FROM TIME OF	SAMPLING UNTIL	DELIVERY TO B	REAU VERITAS		nductivii N, PO4	ate	ige	ide	oniż	lve	Dis	Ĭ	事		Rush C	confirmation Number:	(call lab for #)
					1000		Metals Field FII Conductivity, N+N, PO4	Speciated Alkalinity	Sulphide + H2S Calc	d d	Ammonia-N (Total)	Dissolved Metals with CV Hg, Hardness	Total	픖		State of the	# of Bottl	les Comm	
Sample	Barcode Label	Sample (Location) Identif	cation I	Date Sampled	Time Sampled	Matrix	≥ úż	Š	Ø	Ø	¥.	ΔI	۲	= ,	ije:	COR S			
1		WG-1122680-2	31123-KA-01	6 28/1/23	0930	W	YV	1	/	1	/	1	/	1			7		
2		W6-11222680-2811		28/1/20	1945	W	YV	1	/	V	1	1	1	/			7		
3		MG-11222 (80-2811	23-1CH-08	28/11/23	1500	W	y /	/	/	/	1	/	~	/			7		
4		WG -11222680-2811	13- KH-09	28/11/23	1630	W	Y	1	/	/		/	/	/			7		
5	200	WG-1122680-2911			0945	W	Y	/	V	/	1	1	/	/			7		
6	***	WL-11222680-281	123-KH-01	28/1/23	1445	W	Y	1	/	/	/		/	1	/	/			
7		TRIP BLANK	I BTEX.	VOC)															
8																			
9			3				В									10,000 00 10			
10	11.			*															***************************************
* RELINQ	UISHED BY: (Signati	ure/Print)	Date: (YY/MM	/DD) Time	106 1	/ _REÇEIV	ED BY: (Signal	ure/Print)			Date: (YY/M		Time		s used and	1		Lab Use Only	
Debora 7	Torry ~	- Tre	23/11/2	1 113	o Bloth l	Edela.	re Cé	COLL		2	5 <i>C31111</i>	30	1142	not	submitted	Time Sens	silive T	emperature (°C) on Receipt Cus	Yes No
AVAILABLE FO	OR VIEWING AT WWW	IN WRITING, WORK SUBMITTED O	BORATORIES/RES	OURCES/COC-TER	AS-AND-CONDITIONS								DOCUMENT	IS ACKNO	WLEDGMEN	IT AND AC	CEPTANCE	<u> </u>	te: Bureau Veritas Yellow: Cileni
IT IS THE RESP	PONSIBILITY OF THE	RELINQUISHER TO ENSURE THE	ACCURACY OF TH	E CHAIN OF CUSTO	DY RECORD. AN INC	OMPLETE CH	AIN OF CUSTO	DY MAY RES	ULT IN ANA	LYTICAL	TAT DELAYS	i.						Ice pack	

WE ALL		Bureau Veritas 4606 Canada Way, Burnaby,	British Columbia C	anada V5G 1K5 T	al:(604) 734 7276 T	'oll-free:800-5	63-6266 Fa	x:(604) 731 23	386 www.bvna.c	om		**		600						Page of
VERITAS		INVOICE TO:				Report Info	rmation						Project I	nformatio	n				se O	
ompany Name	#163 GHD	Limited		Company Nam	Α			1		7	uotation#		C30090		_	C397	797_C	OC ne-ne-sateletiki / Hi / B	1111	Bottle Order#:
ntact Name	AP Invoices	and the second s		Contact Name	Stephanie E	Berton					.O. #		735-0026	640-3		A145 5		00	7	
dress	455 PHILLI	Carrier Contract Cont		Address						F	roject#		1122268		- 1					705548
	(519) 884-0	O ON N2L 3X2	705 4004	(*	***	<u> </u>				F	roject Name		Uplar	rd C	and	till_		Chain Of Custody Reco		Project Manager
one:			725-1394 -(anadop	Phone	NationalED	OSupport@	Fax Omayyan	carstenha	anie herton@	Paris S	"Com		Surface V		0	Ton		C#705548-01-01		Brody Andersen
Regulatory Crit		100@Bungar 100015 Wid	-canaday		nstructions	Soupporte	gillaxxaii	i.ou,stopin			ampled By QUESTED (PL	FASE E			<u>, v</u>	. 10	- L	Turnaround Tim	e (TAT) Regu	ired:
- ·	ieria.					C. 1			т т					,	- 1		- 2	Piease provide advanc		and Alice
CSR .			Both	les were	field.	Tilleved	m'	1	1 1	(Calc)							Regular (S	Standard) TAT:		
CCME		2 8	ano	l preser	ved as		9			S) (S		ŝ					6 H D	plied if Rush TAT is not specifie	d):	6
	- 0114.	# *** # #	in di	icated.	e field ved as		ĝ 8			모		TS					Standard	TAT = 5-7 Working days for mos	st tests	L
BC Wate	r Quality		11.00	, -1 -0(,			Metals Field Filtered ? (Y/N) Conductivity, CI, SO4, NO2, NO3,			Sulphide, Un-lonized (as H2S)		Suspended Solids (TSS)	P				Please not	te: Standard TAT for certain test tact your Project Manager for de	s such as BOD	and Dioxins/Furans are
Other	-	* <u> </u>				20	SO	Ţ.	Calc	ized	<u></u>	S	5	ess		ø		cific Rush TAT (if applies to er	-	
							Cl.	kalir	2S	-io	É	dec	with	ndn		,#E	1 DAY	2 Day 3 Day	_	
			Total Control Control			-	Night H	r ₹	+ H2S	5	Z.	sper	<u>sa</u>	Ϋ́		<u>5</u>	L		Date Requir	ed:
SAMPLE	S MUST BE KEF	T COOL (< 10°C) FROM TIME OF S	AMPLING UNTIL E	ELIVERY TO BUF	EAU VERITAS		SE SE	ate	ide	ide	onis	Sus	Med	Nec	끕	, E	Rush Cor	nfirmation Number:	(cal	l lab for #)
Coreale	Barcode Label	Sample (Location) Identification	otion D	ite Sampled	Time Sampled	Matrix	Metals Field Filt Conductivity, (Speciated Alkalinity	Sulphide	id d	Ammonia-N (Total)	Total	Total Metals with CV	Dissolved Hardness	Hợ pleia	Field	# of Bottles	3	Comments	
Gampio	Dal Code Label	WS-11222680-28112			10 00	W	Y		V	1/		/		7	/	7	İ	LEPH/HEPH	on h	ot d
				-			V	/ /		-			-		-	_	- per	LEPH/HEPH		
		WS-11222680-2811	137KH-67 2	8/0/23	030.	W	1 /	V		_	/	/		/	/	/	X	CEPTITION	Wy M	sies,
				9																
									 				\vdash							× 1
			. 1														_			
			-	1			*.							2						
		- 10 Hz - 2000 Hz				******														
													-					1 .		
																		1		
			14		2													9		
								+-			 									
										_							L	1		
・ RELING	UISHED BY: (Sig	nature/Print)	Date: (YY/MM/D	G 1120	Mich !	RECEIV	ED BY: (Sign	GO (Date: (YY/MM)	(DD)	1142		s used and submitted	Time Sen	itive .	Lab Use O		Seal Intact on Cooler?
0.00	(ong	- Jones	אוון <i>בע</i>	7 1130	Acher h	ECK	M	COLOIL		- 2	NUSIII	20	1146				Ten	nperature (°C) on Receipt		es No
VAILABLE FO	R VIEWING AT W	TO IN WRITING, WORK SUBMITTED ON WW.BVNA.COM/ENVIRONMENTAL-LABO	ORATORIES/RESO	JRCES/COC-TERMS	S-AND-CONDITIONS							ISTODY	DOCUMENT	IS ACKNO	WLEDGMEN	T AND AC	CEPTANCE (1116-	White: Bure	<u> </u>
IS THE RESP	PONSIBILITY OF	THE RELINQUISHER TO ENSURE THE A	CCURACY OF THE	CHAIN OF CUSTOL	Y RECORD, AN INC	OMPLETE CH.	AIN OF CUS		SULT IN ANALY						-	-		ł C	e pack	sijes

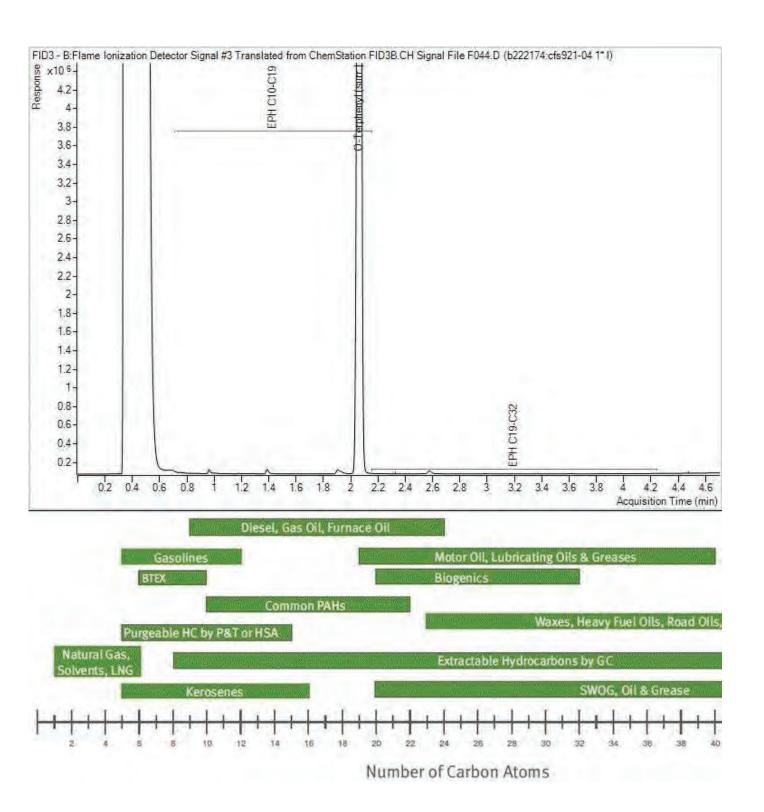

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-281123-KH-06

EPH in Water when PAH required Chromatogram

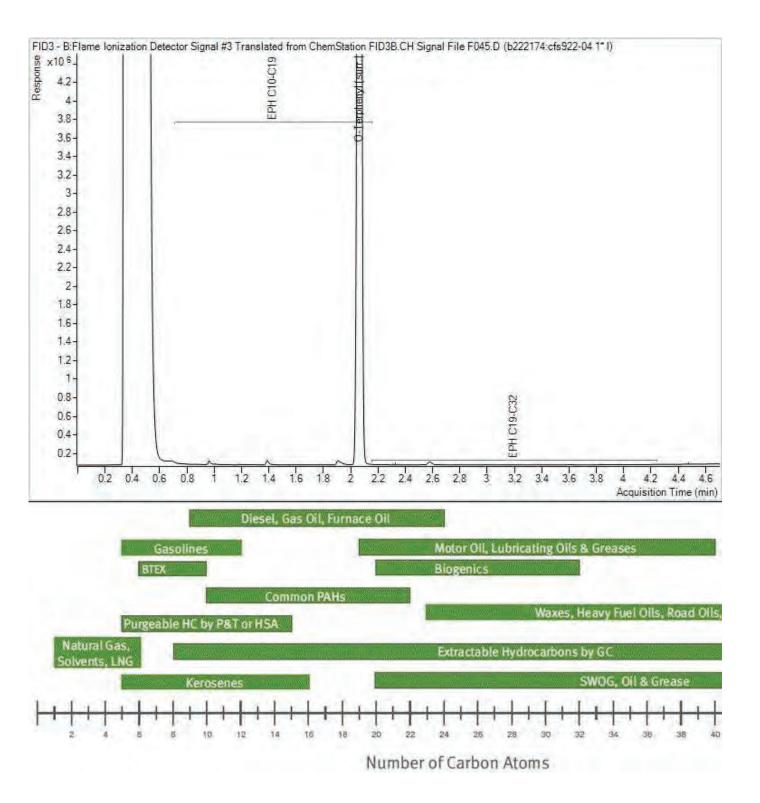

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-281123-KH-07

EPH in Water when PAH required Chromatogram

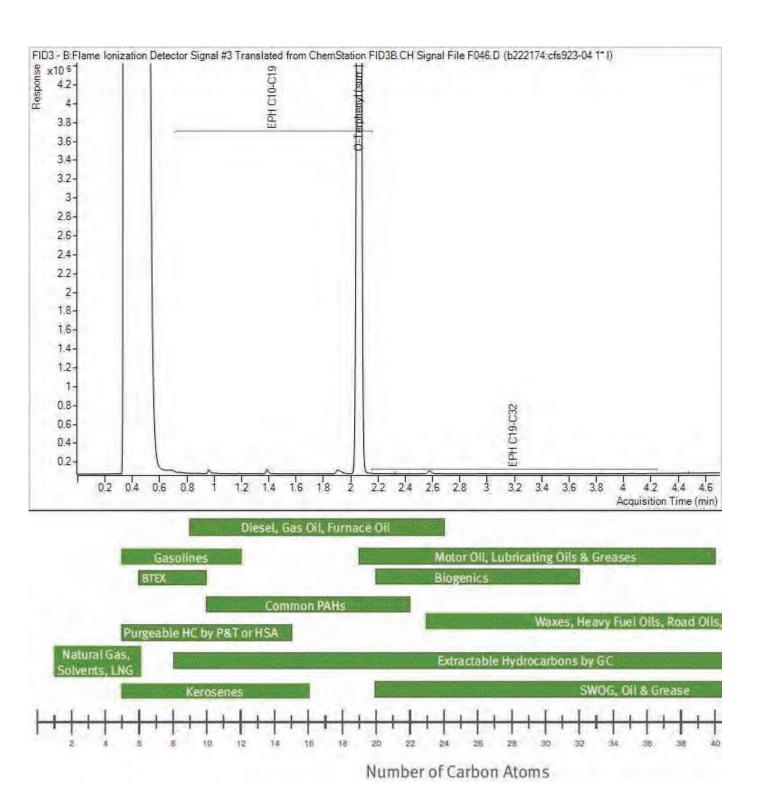

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-281123-KH-08

EPH in Water when PAH required Chromatogram

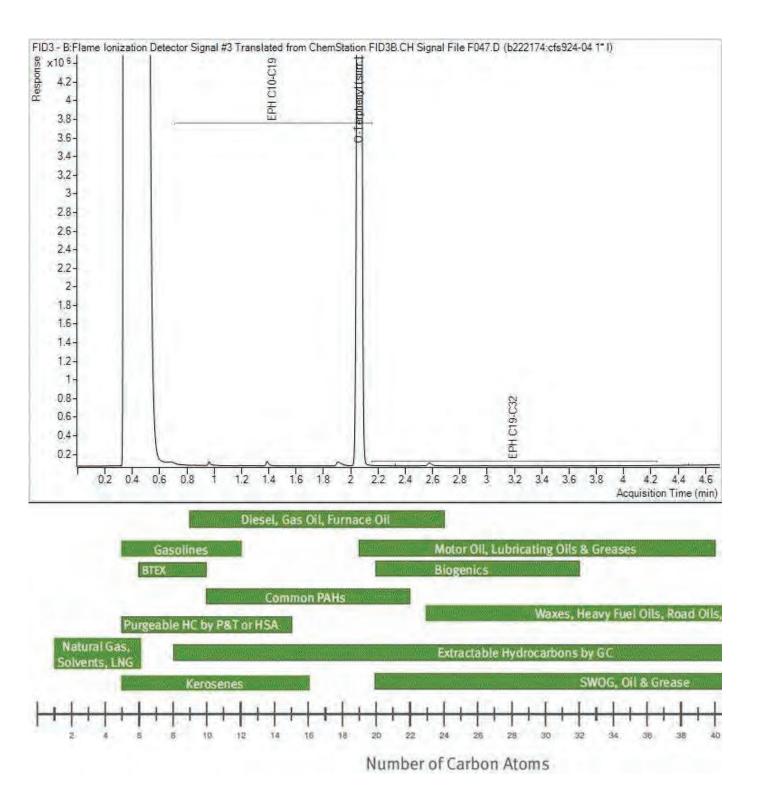

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-281123-KH-09

EPH in Water when PAH required Chromatogram

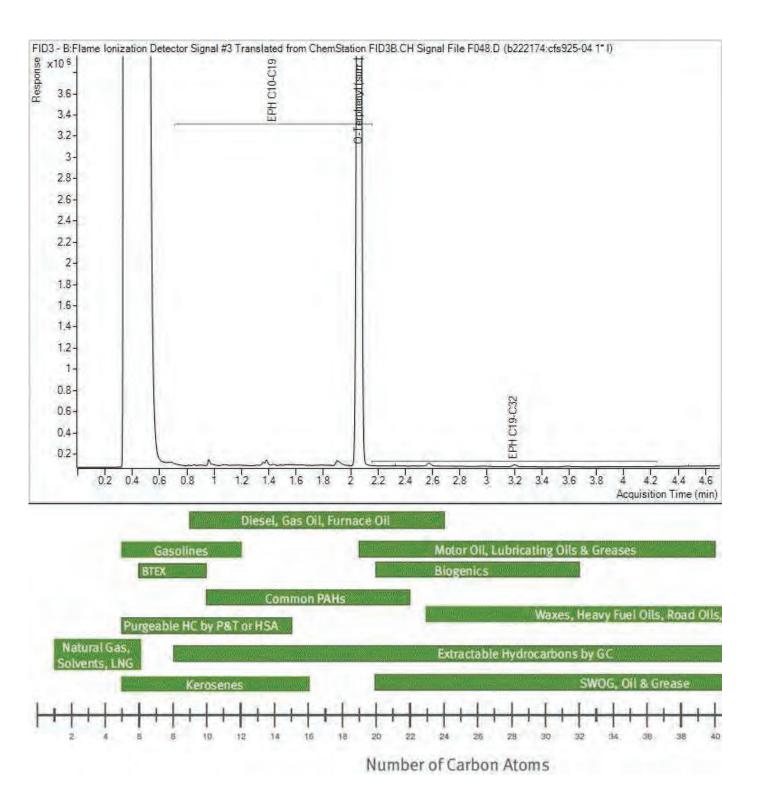

GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WG-11222680-291123-KH-10

EPH in Water when PAH required Chromatogram


GHD Limited

Client Project #: 11222680-15.1

Site Reference: NEW LANDFILL-UPLAND LANDFILL

Client ID: WL-11222680-281123-KH-01

EPH in Water when PAH required Chromatogram

Appendix H

Data Quality Assessment and Verification Report

Data Verification Report

22 February 2024

То	Rose Marie Rocca, Kathleen Hasler, Melissa Jenkins, David R Barton, Carny Wong, Bailey Bjarnason	Project No.	11222680			
Copy to		DVR No.	01			
From	Stephanie Berton	Contact No.	1-519-884-0510			
Project Name	088877 Upland Landfill	Email	Stephanie.Berton@ghd.com			
Subject	Data Quality Assessment and Verification Groundwater Surface Water and Leachate Events Campbell River, BC Northwin Environmental					

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

Laboratory:	Bureau Veritas Canada (2019) Inc.									
Lab Job No.:	C322057, C322498, C354929, C354963, C3	54973, C371	107, C397191, 0	C397797						
Date(s) Sampled:	March – November 2023	arch – November 2023								
Media Sampled:	Groundwater, Surface Water, and Leachate	roundwater, Surface Water, and Leachate Water								
QA/QC	Criteria	riteria Pass Qualifiers Fail N/A								
Holding Times	Analyte specific		\boxtimes							
Temperature	<10°C at receipt	\boxtimes								
Sample Preservation	Required container/preservatives	\boxtimes								
Field Duplicate (blind)	Within 20%/<1xRL		\boxtimes							
Field Blank (blind)	Non detect		\boxtimes							
Trip Blank	Non detect	\boxtimes								
Lab QA/QC	Within standard recoveries		\boxtimes							

The following results are qualified due to holding time exceedance:

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C354963	07/18/2023	WL-11222680-180723-KH-01	pH	5.82	J	s.u.
C354963	07/18/2023	WL-11222680-180723-KH-02	рН	5.96	J	s.u.
C354973	07/18/2023	WG-11222680-180723-KH-05	pH	7.76	J	s.u.
C354973	07/18/2023	WG-11222680-180723-KH-06	pH	7.15	J	s.u.

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C354973	07/18/2023	WG-11222680-180723-KH-07	pН	7.54	J	s.u.
C354973	07/18/2023	WG-11222680-180723-KH-08	pH	7.61	J	s.u.
C354973	07/18/2023	WG-11222680-180723-KH-09	pH	7.14	J	s.u.
C354973	07/19/2023	WG-11222680-180723-KH-10	pH	7.49	J	s.u.
C397797	11/28/2023	WG-11222680-281123-KH-06	pH	7.40	J	s.u.
C397797	11/28/2023	WG-11222680-281123-KH-07	pH	7.32	J	s.u.
C397797	11/28/2023	WG-11222680-281123-KH-08	pH	7.25	J	s.u.
C397797	11/28/2023	WG-11222680-281123-KH-09	pH	7.12	J	s.u.
C397797	11/29/2023	WG-11222680-291123-KH-10	pH	6.91	J	s.u.
C397797	11/28/2023	WL-11222680-281123-KH-01	pH	7.35	J	s.u.
C397797	11/28/2023	WS-11222680-281123-KH-01	pH	6.85	J	s.u.
C397797	11/28/2023	WS-11222680-281123-KH-02	pH	6.47	J	s.u.
C354973	07/18/2023	WG-11222680-180723-KH-06	Nitrate (as N)	0.190	J	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-06	Nitrite (as N)	0.0055	J	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-06	Nitrite/Nitrate	0.195	J	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-06	Orthophosphate	0.0040	J	mg/L

The following results are qualified based on matrix spike recovery outlier:

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C354973	07/18/2023	WG-11222680-180723-KH-05	Sulfide	0.0018	UJ	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-06	Sulfide	0.0018	UJ	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-07	Sulfide	0.0018	UJ	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-08	Sulfide	0.0018	UJ	mg/L
C354973	07/18/2023	WG-11222680-180723-KH-09	Sulfide	0.0018	UJ	mg/L
C354973	07/19/2023	WG-11222680-180723-KH-10	Sulfide	0.0018	UJ	mg/L

The following results are qualified due to a tentatively identified result and may be potentially high due to matrix interference:

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C354973	07/19/2023	WG-11222680-180723-KH-10	Benzo(a)pyrene	0.013	J+	μg/L

The following results are qualified due to incomplete preservation (Sample pH <9). Due to volatility of analyte, a low bias in the results is likely:

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C354963	07/18/2023	WL-11222680-180723-KH-01	Sulfide	0.35	J-	mg/L

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C354963	07/18/2023	WL-11222680-180723-KH-02	Sulfide	0.32	J-	mg/L

The following results are qualified due to field duplicate variability:

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C322498	03/29/2023	WG-11222680-290323-KH-05	Aluminum (dissolved)	11.4	J	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Aluminum (dissolved)	3.0	UJ	μg/L
C354929	07/17/2023	WG-11222680-170723-KH-03	Aluminum (dissolved)	8.8	J	μg/L
C354929	07/17/2023	WG-11222680-170723-KH-04	Aluminum (dissolved)	3.0	UJ	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-05	Arsenic (dissolved)	0.24	J	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Arsenic (dissolved)	0.10	UJ	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-05	Cadmium (dissolved)	0.167	J	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Cadmium (dissolved)	0.010	UJ	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-05	Copper (dissolved)	2.17	J	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Copper (dissolved)	0.20	UJ	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-05	Phosphorus (dissolved)	31	J	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Phosphorus (dissolved)	10	UJ	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-05	Thallium (dissolved)	0.032	J	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Thallium (dissolved)	0.010	UJ	μg/L
C354963	07/18/2023	WL-11222680-180723-KH-01	Total suspended solids (TSS)	140	J	mg/L
C354963	07/18/2023	WL-11222680-180723-KH-02	Total suspended solids (TSS)	180	J	mg/L

The following results are qualified based on field blank detections:

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C322498	03/29/2023	WG-11222680-290323-KH-09	Cadmium (dissolved)	0.034	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-10	Cadmium (dissolved)	0.077	J+	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-05	Iron (dissolved)	24.1	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Iron (dissolved)	11.5	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-09	Iron (dissolved)	11.9	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-10	Iron (dissolved)	16.5	U	μg/L

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
C322498	03/29/2023	WG-11222680-290323-KH-05	Selenium (dissolved)	0.28	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-06	Selenium (dissolved)	0.18	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-07	Selenium (dissolved)	0.20	U	μg/L
C322498	03/29/2023	WG-11222680-290323-KH-09	Selenium (dissolved)	0.23	U	μg/L

Conclusion:

Based on the assessment detailed in the foregoing, the data summarized are acceptable with the specific qualifications noted above.

Notes:

N/A - Not Applicable

QA/QC - Quality Assurance/Quality Control

RL - Reporting Limit

N - Nitrogen

s.u. - Standard pH Units

U - The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

 - The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

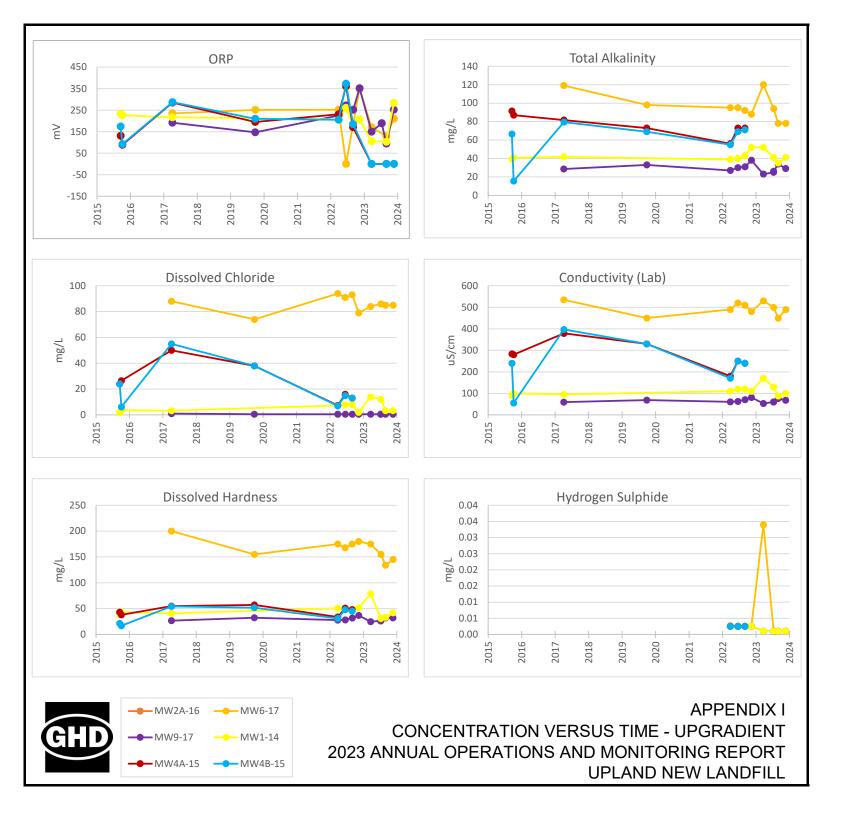
 The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

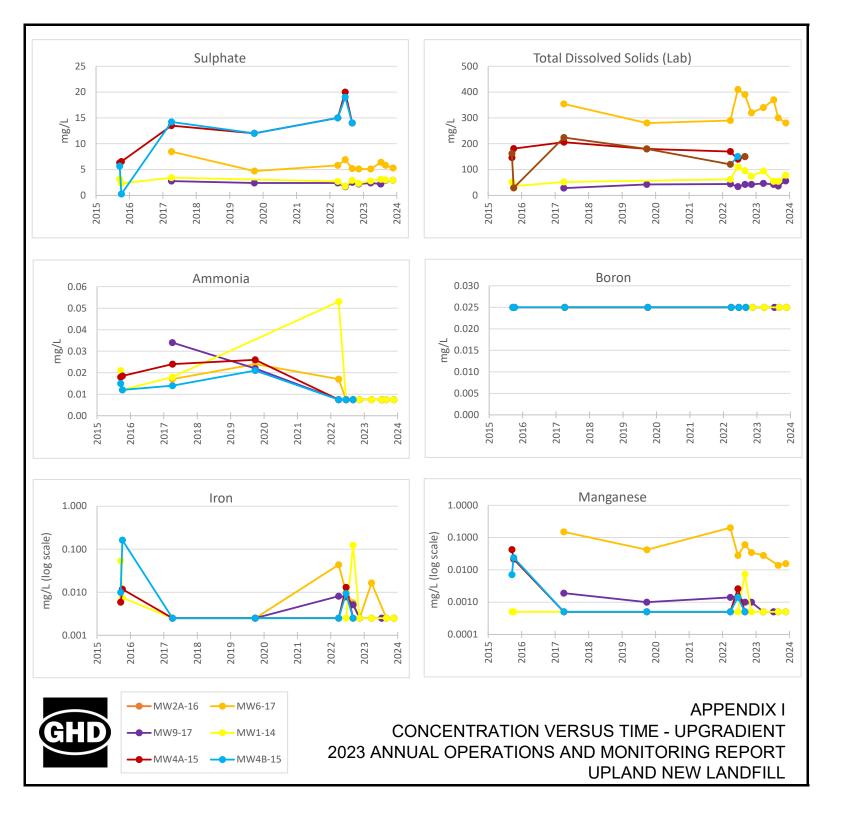
J+ - The result is an estimated quantity, but the result may be biased high.

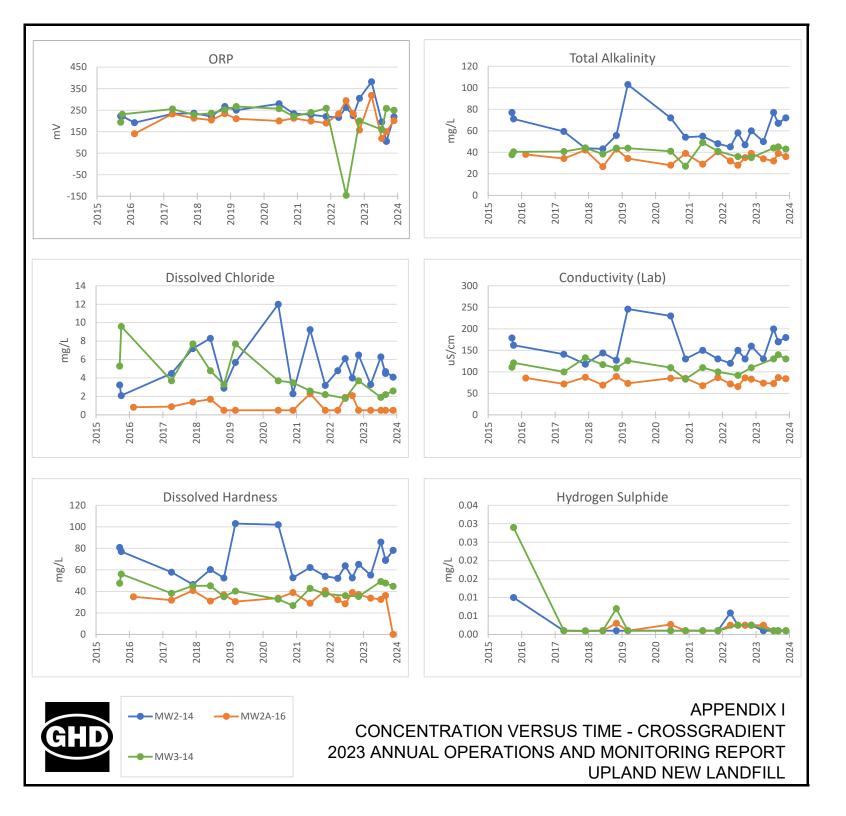
J- The result is an estimated quantity, but the result may be biased low.

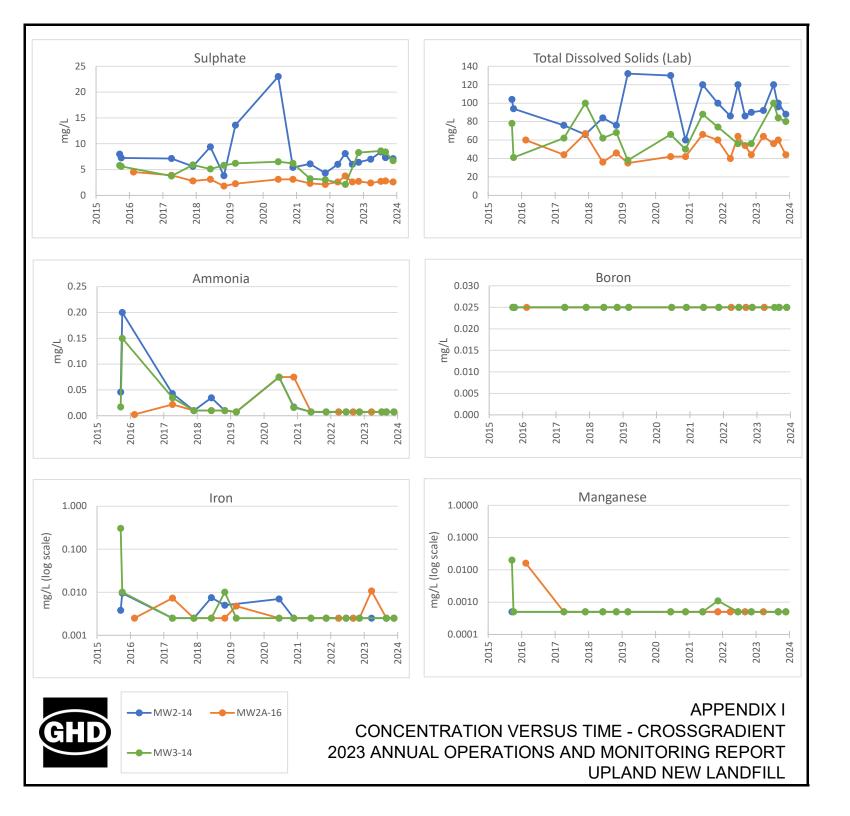
Data verification reference documents:

- 1. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", United States Environmental Protection Agency (USEPA) 540/R-99-008, September 2016.
- "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", USEPA 540/R-94-013, September 2016.
- 3. "British Columbia Environmental Laboratory Manual", Analysis, Reporting & Knowledge Services Knowledge Management Branch Ministry of Environment and Climate Change Strategy Province of British Columbia, April 2020.

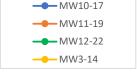

Regards

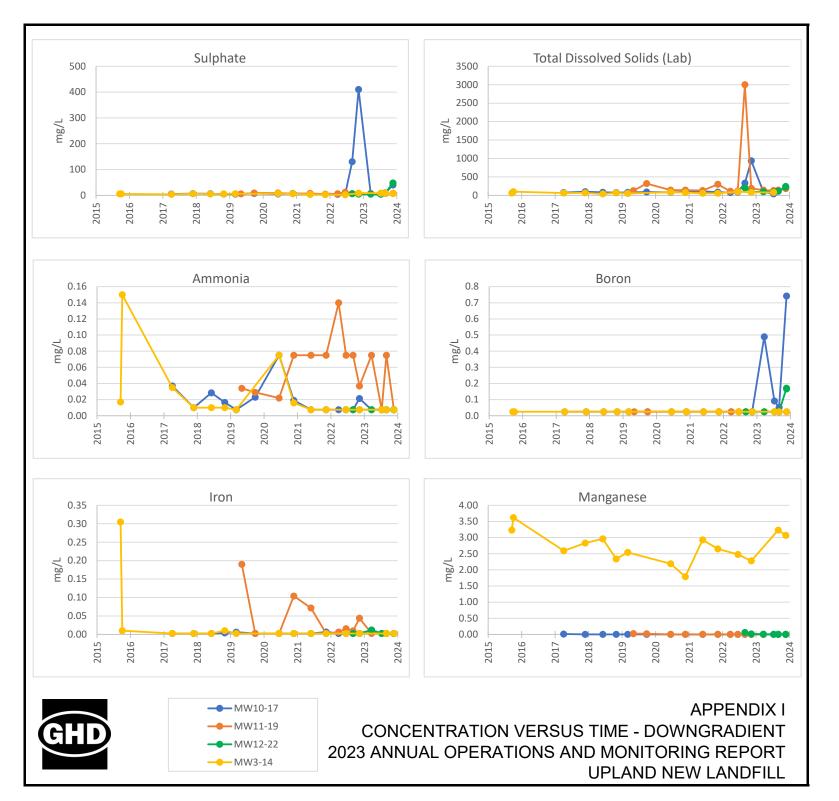

Stephanie Berton


Data Management - Data Validator


Appendix I

Concentration Versus Time Plots





2023 ANNUAL OPERATIONS AND MONITORING REPORT **UPLAND NEW LANDFILL**

Appendix J

2024 Environmental Monitoring Program Specification

Environmental Monitoring Program Specification - 2024

PROJECT: New Landfill EMP

CLIENT: Northwin Environmental

PROJECT NO.: 11222680.15

PROJECT MANAGER: Diana Nowak

MONITORING STAFF: RESPONSIBILITY

Kathleen Hasler Field Lead
Debra Tong Field Secondary
Airesse MacPhee Project Chemist
Tristan Habdas Database Analyst

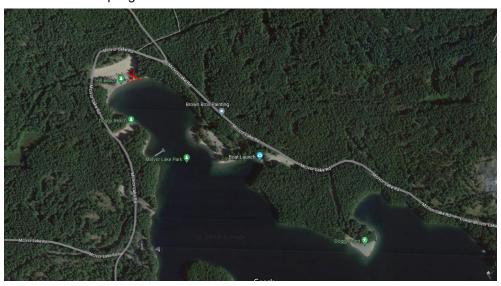
LABORATORIES USED: ALS Environmental, Burnaby, British Columbia

AUTHORIZATION: MONITORING EVENT(S) PC/PM SIGNATURE

Mar/Apr, Jun, Aug/Sep, Nov

Revision #	Date	Revision	GHD
1	January 2022	Specification was developed based on the DOCP, dated July 8, 2021	RMR
2	April 2022	Typo in 2022 EMP Spec was corrected, from MW12-17 to MW11-19.	RMR
3	August 2022	MW3-14 was added to the groundwater monitoring program as a downgradient compliance well, to be sampled quarterly.	RMR
4	August 2022	MW12-22 was added to the groundwater monitoring program as a downgradient compliance well following its installation, to be sampled quarterly.	RMR
		Renamed LS1 to LDMP-1 and renamed LS2 to LDMP-2. Added LDS, LDMP-3, and LDMP-4. These changes were made to the leak detection monitoring program to account for as built conditions.	
		Added phenols to the leachate analytical parameter list, to be analyzed annually due to presence of wood waste.	
5	September 2022	Updated QA/QC samples. Added LW-PFAS to field blank's analytical list in Q4.	KH
6	March 2023	Added semi-annual water level monitoring to the full groundwater well network.	RMR
		Removed East and West surface water ditch from the EMP until final cover is placed on the New Landfill.	
		Added Cell 1 West leachate sump to the quarterly leachate monitoring program. Samples will be collected following the discharge of waste to the cell.	

Revision #	Date	Revision	GHD
7	May 2023	Perfluorinated compounds has been discontinued from the leachate analytical list since standards only apply to sites set out in Schedule 2 as item A4, C3, E10 or G1.	RMR
		For monitoring location TLIP, the sampler has been changed from GHD to Upland to reflect current field practices.	
8	March 2024	Update project staffing, included S07-24 to the leachate monitoring program.	


Monitoring Schedule: Table 1
Groundwater Analytical Parameters: Table 2
Surface Water Analytical Parameters: Table 3
Leachate Analytical Parameters: Table 4
Notes: Table 7

Note for Staff – Labelling error on casing:

LFG1-22 labelled as "SVP1-22" on casing. LFG2-22 labelled as "SVP2-22" on casing.

McIvor Lake Sampling Location Reference Photo:

Environmental Monitoring Program Specification - 2024 Monitoring Schedule New Landfill Northwin Environmental, Campbell River, BC

Monitoring	1	Sample	Quarterly	March/		August/	
Location	Purpose	Matrix	Hydraulic Monitoring	April	June	September	November
	itoring (19 WL Locations, 12 Sampling Locations) oring Wells (5 Locations)						
MW6-17	To monitor upgradient groundwater quality.	WG	Q	V	√	√	√
MW9-17	To monitor upgradient groundwater quality.	WG	Q	, √	, √	, ,	, ,
MW1-14	To monitor upgradient groundwater quality.	WG	Q	, √	, √	, √	, √
				√ √		√ √	√ √
MW4A-15	To monitor upgradient groundwater quality.	WG	Q	·	√ ,	·	·
MW4B-15	To monitor upgradient groundwater quality.	WG	Q	V	V	√ 	√
Cross-Gradient Mo	onitoring Wells (2 Locations)						
MW2-14	To monitor cross-gradient groundwater quality.	WG	Q	V	$\sqrt{}$	√ 	V
MW2A-16	To monitor cross-gradient groundwater quality.	WG	Q	\checkmark	√	√	√
Downgradient Con	npliance Monitoring Wells (4 Locations, 1 Proposed Location)					1	
MW10-17	To monitor downgradient groundwater quality near the east property boundary.	WG	Q	\checkmark	√	√	√
MW12-22	To monitor downgradient groundwater quality at the south property boundary.	WG	Q	V	√	√	√
MW11-19	To monitor downgradient groundwater quality at the south east corner of the site.	WG	Q	$\sqrt{}$	√	√	√
MW3-14	To monitor groundwater quality immediately downgradient of Phase 1 East Landfill Cell.	WG	Q	V	√	√	√
MW13 (proposed)	To monitor groundwater quality immediately downgradient of the landfill. Sample once installed.	WG	Q	$\sqrt{}$	√	√	\checkmark
MW5A-15, MW5B-1	15, MW7-17, MW8-17, MW15A-18, MW15B-18, PZ1-19	WG	Q	-	-	-	-
Surface Water Moi	nitoring (4 Monitoring Locations, 2 Sampling Locations)						
Rico Gauge	To monitor the water level in Rico Lake via surface water	N/A	Q	-	-	-	-
SW15-02	gauge. To monitor surface water quality in Rico Lake	WS	N/A	-	-	-	√
McIvor Lake	To monitor the water level in McIvor Lake via BC Hydro Data Records - use link in notes below. Look up and record on day of monitoring event - data is only available for a limited period	N/A	Q	-	-	-	-
	on BC Hydro website ¹						,
SW15-01 Leachate Monitoria	To monitor surface water quality in McIvor Lake	WS	N/A	-	-	-	√
S06-21	To characteize leachate quality collected from the Leachate Sump at northeast end of Cell 1 West. Sampling location is from the leachate collection system sump riser pipe.	WL	N/A	V	V	V	V
TLIP	To assess leachate treatment performance and determine if changes to the treatment process are required. Upland to collect samples prior to discharge to the treated leachate infiltration pond (TLIP) to assess if quality meets the CSR DW Standards.	WL	N/A	-	-	-	-
S07-24	To characteize leachate quality collected from the Leachate Sump in Cell 1 West.	WL	N/A	√	√	√	√
Leak Detection Mo	nitoring Program (5 Locations)						
LDS	To monitor leakage at the primary liner of the landfill as part of the Trigger Level Response Plan. If water is present, collect a sample. Acess to the leak detection sump is on the north side of the landfill.	W	Q	V	V	V	V
LDMP-1	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the north side of the landfill. If water is present call PM	W	Q	-	-	-	-
LDMP-2	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the north side of the landfill. If water is present call PM	W	Q	-	-	-	-
LDMP-3	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the east side of the landfill. If water is present call PM	W	Q	-	-	-	-
LDMP-4	To monitor leakage at the primary liner of the landfill, as part of the Trigger Level Response Plan. Access to the Leak Detection Monitoring Pipe is on the ease side of the landfill. If water is present call PM	W	Q	-	-	-	-
Landfill Gas in Soi	I Monitoring (2 Locations)						
LFG1-22	To monitor landfill gas migration.	n/a	Q ²	-	-	-	√
LFG2-22	To monitor landfill gas migration.	n/a	Q ²	-	-	-	√
Field Quality Assu Field Blank	rance/Quality Control (QA/QC) ³	WG	_	√	√	√ √	_
Trip Blank - BTEX/\	/PH Only	WL/W	-	-	-	-	√
Groundwater Duplic	ate	WG	-	V	V	V	√
Leachate Duplicate		WL	-	V	√	√	-

Notes:

^{1 -} McIvor Lake water level. Look up current water level at the Ladore Dam: https://www.bchydro.com/energy-in-bc/operations/transmission-reservoir-data/previous-reservoir-elevations/vancouver_island/ladore_ldr.html

 $^{^{2}\}text{-}$ Collect water level only if screen is blocked and a landfill gas in soil cannot be measured.

³ - The number of QC samples should be 20% of all samples collected within 48 hours of each other; and include duplicate, field blank, and trip blank samples for each parameter. Add QA/QC samples to the November event if 20% has not been reached.

Environmental Monitoring Program Specification - 2024 Groundwater Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

	Quarterly						
Groundwater (WG)	Mar/Apr	Jun	Aug/Sep	Nov			
Water Level Monitoring	'	•	'	•			
Depth to Water	√	√	V	√			
Depth to Bottom	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark			
Field Parameters	·						
Conductivity (uS/cm)	√	√	V	√			
Oxidation reduction potential (mV)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark			
pH (s.u.)	\checkmark	\checkmark	$\sqrt{}$	\checkmark			
Temperature (deg C)	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark			
Total dissolved solids (mg/L)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark			
Turbidity (ntu)	√	$\sqrt{}$	$\sqrt{}$	\checkmark			
General Chemistry	·						
Alkalinity (Speciated)	√	$\sqrt{}$	V	√			
Conductivity	√	\checkmark	$\sqrt{}$	$\sqrt{}$			
Chloride	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark			
Sulphate	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark			
Total Sulphide (Low Level) + H ₂ S Calc	\checkmark	\checkmark	$\sqrt{}$	\checkmark			
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark			
Nitrate (as N)	\checkmark	\checkmark	$\sqrt{}$	\checkmark			
Nitrite (as N)	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark			
Nitrite/Nitrate (N+N)	\checkmark	\checkmark	$\sqrt{}$	\checkmark			
Orthophosphate	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark			
Total Dissolved Solids (TDS)	\checkmark	\checkmark	$\sqrt{}$	\checkmark			
Nutrients	·						
Ammonia Nitrogen	√	√	√	√			
Metals		<u>, </u>	<u> </u>				
Dissolved CSR Metals (Incl. Hg)	√	√	√	√			
Dissolved Hardness (as CaCO ₃)	\checkmark	$\sqrt{}$	\checkmark	\checkmark			
Other							
LEPH/HEPH (Incl. PAH/EPH)	V	V	V	√			

Environmental Monitoring Program Specification - 2024 Surface Water Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

0 (140)	Quarterly					
Surface Water (WS)	Mar/Apr	Jun	Aug/Sep	Nov		
Water Level Monitoring	1	•	•	•		
Water level at Rico Gauge	√	√	V	√		
Record water level using BC Hydro Data Records - use link in Table 1.	V	V	V	$\sqrt{}$		
Field Parameters			ı			
Conductivity (uS/cm)	√	V	V	√		
Oxidation reduction potential (mV)	√	V	$\sqrt{}$	√		
pH (s.u.)	$\sqrt{}$	V	$\sqrt{}$	√		
Temperature (deg C)	√	V	$\sqrt{}$	√		
Total dissolved solids (mg/L)	$\sqrt{}$	√	$\sqrt{}$	\checkmark		
Turbidity (ntu)	√	V	$\sqrt{}$	√		
General Chemistry	•					
Alkalinity (Speciated)	√	√	√	√		
Conductivity	\checkmark	$\sqrt{}$	\checkmark	\checkmark		
Chloride	\checkmark	$\sqrt{}$	\checkmark	\checkmark		
Sulphate	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$		
Total Sulphide (Low Level) + H ₂ S Calc	\checkmark	$\sqrt{}$	\checkmark	\checkmark		
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$		
Nitrate (as N)	\checkmark	$\sqrt{}$	\checkmark	\checkmark		
Nitrite (as N)	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$		
Nitrite/Nitrate (N+N)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark		
Orthophosphate	\checkmark	$\sqrt{}$	\checkmark	\checkmark		
Total Suspended Solids (TSS)	\checkmark	$\sqrt{}$	\checkmark	√		
Nutrients	·					
Ammonia Nitrogen	√	V	√	√		
Metals						
Total CSR Metals (Incl. Hg)	√	V	√	√		
Dissolved Hardness (as CaCO ₃)	√	V	√	√		
Other						
LEPH/HEPH (Incl. PAH/EPH) ¹	-	-	-	-		

^{1 -} If leachate concentrations for LEPH/HEPH are 80% within CSR 3.2 Aquatic Life Criteria, include LEPH/HEPH analysis in surface water during the next event

Environmental Monitoring Program Specification - 2024 Leachate Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

	Quarterly					
Leachate (WL)	Mar/Apr	Jun	Aug/Sep	Nov		
Water Level Monitoring	ı	ı	ı			
Depth to Water	V	V	\checkmark	V		
Depth to Bottom	V	V	\checkmark	$\sqrt{}$		
Field Parameters	•		1			
Conductivity (uS/cm)	V	V	\checkmark	V		
Oxidation reduction potential (mV)	√	$\sqrt{}$	\checkmark	$\sqrt{}$		
pH (s.u.)	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Temperature (deg C)	V	\checkmark	\checkmark	$\sqrt{}$		
Total dissolved solids (mg/L)	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Turbidity (ntu)	√	$\sqrt{}$	\checkmark	$\sqrt{}$		
General Chemistry	•		1			
Alkalinity (Speciated)	V	$\sqrt{}$	\checkmark	V		
Conductivity	V	\checkmark	\checkmark	$\sqrt{}$		
Chloride	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Sulphate	V	√	\checkmark	V		
Total Sulphide (Low Level) + H ₂ S Calc	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	√	$\sqrt{}$	\checkmark	$\sqrt{}$		
Nitrate (as N)	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Nitrite (as N)	V	V	\checkmark	$\sqrt{}$		
Nitrite/Nitrate (N+N)	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Orthophosphate	V	\checkmark	\checkmark	$\sqrt{}$		
Biological Oxygen Demand (Total) (BOD5)	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
Chemical Oxygen Demand (COD)	√	\checkmark	\checkmark	\checkmark		
Total Dissolved Solids (TDS)	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$		
Total Suspended Solids (TSS)	√	$\sqrt{}$	\checkmark	$\sqrt{}$		
Nutrients						
Ammonia Nitrogen	√	√	V	V		
Metals						
Total CSR Metals (Incl. Hg)	√	√	\checkmark	V		
Dissolved Hardness (as CaCO ₃)	√	√	V	V		
Other	·		1			
LEPH/HEPH (Incl. PAH/EPH)	√	√	\checkmark	V		
BTEX/VPH	-	-	-	\checkmark		
Chlorinated phenols + Non-chlorinated Phenols + Nitrophenols + Hydroxy Phenols	-	-	-	\checkmark		

Environmental Monitoring Program Specification - 2024 Leak Detection Water Analytical Parameters New Landfill Northwin Environmental, Campbell River, BC

Table 5

	Quarterly					
Leak Detection Water (W)	Mar/Apr	Jun	Aug/Sep	Nov		
Water Level Monitoring	'	•		•		
Depth to Water	√	√	$\sqrt{}$	√		
Depth to Bottom	√	\checkmark	\checkmark	√		
Field Parameters	•	•		•		
Conductivity (uS/cm)	√	√	V	√		
Oxidation reduction potential (mV)	√	\checkmark	\checkmark	√		
pH (s.u.)	\checkmark	\checkmark	\checkmark	$\sqrt{}$		
Temperature (deg C)	√	\checkmark	\checkmark	√		
Total dissolved solids (mg/L)	$\sqrt{}$	\checkmark	\checkmark	√		
Turbidity (ntu)	√	√	$\sqrt{}$	√		
General Chemistry	•	·		•		
Alkalinity (Speciated)	√	√	$\sqrt{}$	√		
Conductivity	√	√	\checkmark	√		
Chloride	$\sqrt{}$	\checkmark	\checkmark	√		
Sulphate	√	\checkmark	\checkmark	√		
Total Sulphide (Low Level) + H ₂ S Calc	$\sqrt{}$	\checkmark	$\sqrt{}$	√		
Total Sulphide, Un-ionized (as H ₂ S) (Calc)	√	√	$\sqrt{}$	√		
Nitrate (as N)	\checkmark	\checkmark	\checkmark	\checkmark		
Nitrite (as N)	√	\checkmark	\checkmark	√		
Nitrite/Nitrate (N+N)	$\sqrt{}$	\checkmark	$\sqrt{}$	√		
Orthophosphate	√	√	$\sqrt{}$	√		
Biological Oxygen Demand (BOD)	\checkmark	\checkmark	\checkmark	√		
Chemical Oxygen Demand (COD)	√	√	V	√		
Total Dissolved Solids (TDS)	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark		
Total Suspended Solids (TSS)	√	√	\checkmark	√		
Nutrients	•					
Ammonia Nitrogen	V	√	V	√		
Metals	•	-		•		
Total CSR Metals (Incl. Hg)	√	√	$\sqrt{}$	√		
Dissolved Hardness (as CaCO ₃)	V	√	\checkmark	√		
Other	·					
LEPH/HEPH (Incl. PAH/EPH)	V	√	V	√		
BTEX/VPH	-	-	-	√		
Phenols	-	-	-	V		

